Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устройства переноса заряда УПЗ

    В этом случае при наличии электрического поля, создаваемого между двумя электродами — между анодом (+) и катодом (—), электроны и ионы будут двигаться к соответствующим электродам, осуществляя перенос электрических зарядов. Наибольшую роль в переносе зарядов играют электроны, отличающиеся меньшей массой и, следовательно, большой подвижностью. Это характерно для любого газового разряда. Для дугового разряда, с которым обычно имеют дело в электротермических устройствах, или, как дальше будем называть, коротко — электрической дуги, характерны следующие особенности  [c.54]


    Главным структурным элементом молекулярной электроники для фарадеевских и нефарадеевских приборов является жидкостный диод — аналог электронной лампы. Так же как вакуумные, газоразрядные и твердотельные, жидкостные диоды могут быть усложнены введением дополнительных электродов (триоды, тетроды, пентоды, гексоды, гептоды), а также иметь сосредоточенные и распределенные структуры. В настоящее время созданы десятки конструктивных разновидностей цриборов и устройств, реализующих эффекты переноса зарядов в жидких средах и на границе твердых и жидких фаз. Укажем, в частности, на планарные системы с применением жидких кристаллов, где электролиты находятся в тонких пленках, волокнах, капиллярах. Границы фаз, на которых происходит преобразование информации, как правило, электрически анизотропны, и на их основе возможен синтез новых пространственных распределений электронной плотности, не присущих априори объемам веществ, образующих эти границы. Важное значение имеют также фазовые границы в пленках, волокнах, капиллярах, в которых энергетические спектры определяются структурами сопрягающихся молекул, глобул, клеток и других более макроскопических образований. [c.5]

    На основе полупроводниковой или металлической нанотрубок возможно создание полевого транзистора, работающего при комнатной или сверхнизкой температуре соответственно. Полевые транзисторы — устройства, позволяющие регулировать перенос заряда с помощью управляющего электрического поля, что используется для усиления сигнала, в переключателях и т. д. [c.391]

    Для проведения многих важных химических процессов необходима электрическая энергия, другие же процессы, наоборот, могут дать ее. Поскольку электричество играет важную роль в современной цивилизации, интересно ознакомиться с той областью химии, которая называется электрохимией и рассматривает взаимосвязи, существующие между электричеством и химическими реакциями. Как мы убедимся, знакомство с электрохимией позволит нам получить представление о таких разнообразных вопросах, как устройство и действие электрических батарей, самопроизвольность протекания химических реакций, электроосаждение металлов для получения металлических покрытий и коррозия металлов. Поскольку электрический ток связан с перемещением электрических зарядов, в частности электронов, в электрохимии внимание сосредоточено на реакциях, в которых электроны переносятся от одного вещества к другому. Такие реакции называются окислительно-восстановительными. [c.199]


    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевшего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е Си на катоде Си + + Че" Си б) реакция должна быть единственной, иначе точное интегрирование тока затруднено в) электролиты и электроды должны быть устойчивыми во времени г) реакции на электродах должны протекать с достаточно высокими скоростями. Таким требованиям могут удовлетворять некоторые электрохимические реакции, характеризующиеся потенциалами, лежащими между потенциалами водородного и кислородного электродов (рис. 66). При отсутствии в системе газообразных водородов и кислорода и при малой электрохимической поляризации электродов на них будут протекать лишь основные реакции. Системой, удовлетворяющей указанным требованиям, может быть 12+ + 2е ч 21" Е = 0,53 В. Потенциал ее положительнее потенциала водородного электрода и при рН< 11 отрицательнее потенциала кислородного электрода, поэтому в водных растворах в присутствии иода и ионов I" кислород и водород выделяться не будут. Эта реакция в прямом и обратном направлениях протекаете небольшой электрохимической поляризацией, следовательно, на электродах можно получить [c.367]

    По существу электрохимия имеет дело с химическими реакциями, в которых происходит перенос электронов, а также с электрическим током, используемым или получаемым в подобных реакциях. Грубо говоря, всю электрохимию можно подразделить на две большие области, по смыслу как бы противоположные друг другу, несмотря на то что каждая из них подчиняется одним и тем же общим законам. Первая из этих областей связана с электролизом — процессом, в ходе которого электрический ток, вызываемый внешним электрическим потенциалом, обусловливает химическое превращение. Вторая область связана с электрохимическими элементами (называемыми также гальваническими элементами)— устройствами, в которых химическое превращение используется- для получения электрического тока. Изучение электролиза и электрохимических элементов неотделимо от переноса электрических зарядов в химических системах, и этому вопросу мы уделим много внимания. Перед тем как приступить к изучению данной главы, рекомендуется освежить в памяти методы составления уравнений окислительно-восстановительных реакций и полуреакций (см. гл. 14), поскольку мы будем иметь дело именно с такими реакциями. Характер подобных процессов и их связь с фундаментальными свойствами реагентов постоянно рассматриваются в данной главе. [c.283]

    Метод капиллярного электрофореза также используется в /х-СПА-устройствах. Проба и буферный раствор вводятся в капилляр. При создании разности потенциалов на концах капилляра наблюдается протекание двух процессов. Первый, называемый электрофоретическим разделением, представляет собой движение положительно или отрицательно заряженных индивидуальных ионов в жидкости под влиянием приложенного поля. Второй процесс называется электро-осмотическим переносом и приводит к движению всей жидкости в капилляре. Реализация этого процесса обусловлена существованием двойного электрического слоя (слоя Гельмгольца) вблизи стенок капилляра. Этот слой образован неподвижными отрицательными зарядами на стенках капилляра (ионизированные силанольные группы) и положительно заряженными ионами из жидкости, которые притягиваются отрицательными зарядами. Если вектор напряженности электрического поля направлен вдоль капилляра, то электростатические силы приводят в движение слой подвижных положительно заряженных ионов. В конечном счете, благодаря молекулярному взаимодействию между слоями жидкости (вязкость жидкости), вся жидкость в капилляре приходит в движение. [c.646]


    Зарядная лента внутри колонны высокого напряжения может приводиться в движение мотором. С помощью особого впрыскивающего устройства, которое расположено на основании генератора, на ленту накосятся электрические заряды, затем они переносятся лентой к верхнему концу колонны. Там заряды, снимаясь с ленты, заряжают изолированный сферический высоковольтный электрод установки. Величина получаемого напряжения зависит от емкости электрода и в особенности от качества изоляции. [c.75]

    Принцип работы роторного генератора заключается в том, что при вращении ротора происходит перенос электростатических зарядов с коронирующих зарядных устройств на высоковольтный электрод, ионы возникают в зоне ионизаторов зарядного устройства (под действием напряжения возбуждения) и осаждаются на поверхности ротора, который переносит их к разрядному устройству. Все элементы генератора работают в газовой (водородной) [c.195]

    Бикфордовы шнуры (шнуры медленного горения или бикфордовы) представляют собой устройства, предназначенные для переноса пламени по направлению к обычному запалу или детонатору. Обычно они состоят из тонкой оболочки из текстильного материала, просмоленного или пропитанного каучуком или пластмассой, внутри которой находится линейный (по всей длине) заряд черного пороха. [c.345]

    При использовании аргонового ионизационного детектора газ-носитель, аргон, из колонки поступает в камеру детектора, сходную по устройству с трубкой Гейгера — Мюллера, и ионизируется под действием бомбардирующих его р-частиц. Как уже говорилось в гл. 5, при прохождении положительно заряженных ионов аргона вблизи катода они приобретают электрон и становятся нейтральными. В результате этой рекомбинации образуется рентгеновское излучение, приводящее к ионизации многих атомов аргона. Это вызывает самопроизвольную постоянную ионизацию, в результате чего в трубке Гейгера — Мюллера получается постоянный ток. Если в потоке газа присутствует вещество с потенциалом ионизации, меньшим, чем у аргона, оно взаимодействует с ионами аргона с переносом электрона. В результате атомы вещества приобретают положительный заряд. При подходе к катоду они получают электрон и также становятся нейтральными. Однако в случае большинства органических соединений избыточная энергия рекомбинации не приводит к получению рентгеновского излучения, а вызывает разрывы химических связей. Таким образом, если присутствует такое вещество, ток между электродами уменьшается. Ток в процессе хроматографирования измеряется и регистрируется как функция времени. При этом необходимо предварительно провести калибровку, как и в случае детектора по теплопроводности. Чувствительность детектора этого типа составляет 0,1 мкг. [c.192]

    Поперечные аналоговые фильтры. Старая идея о создании таких фильтров нашла свое воплощение только в последние годы после разработки новых электронных приборов, главным образом устройств переноса зарядов (УПЗ) [29, 30] (для высоких частот используются приборы поверхностных акустических волн, ППАВ). Основная блок-схема показана на рис. 7.13 и представляет собой дискретно-временную реализацию работы, описываемую уравнением (87). Аналоговая линия задержки имеет ответвления, разделенные интервалами задержки Ат. В момент вре.мени t берется дискретное зпачеипе импульса, v(t) в каждом ответвлении k и умножается на вес ш/,. Все [c.512]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Настоящий проект направлен на разработку методов получения молекулярноорганизованных металлокомплексных систем с направленным фотостимуллированным переносом заряда и энергии и создания на их основе искусственных супрамо-лекулярных фотохимических устройств , обеспечивающих эффективное преобразование энергии света в химическую, хранение и переработку информаци, функционирование сенсорных и оптоэлектронных устройств. [c.56]

    Исследования по данном проекту направлены на разработку принципов конструирования молекулярно-организованных мега Тлокомплексных систем с векторным фото- и электростимуллированным переносом заряда и энергии для создания на их основе нового поколения материалов для наноразмерных оптоэлектронных устройств. [c.62]

    Исследования по данному проекту направлены на разработку принщнюв конструирования молекулярно-организованньгх металлокомплексных систем с векторным фотостимулированным переносом заряда и энергии и создание на их основе искусственных супрамолекулярных фотохимических устройств , обеспечивающих эффективное преобразование различных видов энергии, запись, хранение и переработку информации, функционирование наноразмерных сенсорных и оптоэлектронных устройств [c.46]

    Не исключено, что наблюдающийся на практике аномально большой срок службы жидкокристаллических устройств (тысячи часов) обусловлен также участием в переносе зарядов сольватированных электронов, генерируемых на катоде. Принято считать, что электропроводность жидкокристаллических веществ обусловлена движением ионов. Однако на возможную роль электронной проводимости указывает, например, фотоинжекция электронов с катода [17]. В последнее время закономерностям электрохимической генерации сольватированных электронов уделяется большое внимание [18, 19]. Соль-ватированные электроны удается генерировать на платиновом, медном и ртутном катодах в растворах солей лития в гексаметилфосфортриамиде, а также в растворах (С4Но)4Х1 в диметилсульфоксиде и пропнленкарбо-нате [20]. Они могут быть электрохимически окислены на платиновом и медном анодах [21]. Из этих данных следует, что предположение об участии сольватированных электронов в переносе зарядов в жидкокристаллических веществах представляется разумным. [c.50]

    Эти вещества используются в различных электронных устройствах счетно-вычислительных машинах, транзисторах и т. п. Ряд органических веществ также обладают полупроводниковыми свойствами, например, красители, конденсированные ароматические системы (также угли), комплексы с переносом заряда, полимеры с сопряженными связями (поливинилен, полифенилен, полиарилен-хиноны, полиакрилонитрил, полиаминохиноны, полиферроцены и др.). Существенная особенность, отличающая полупроводник от металла, заключается в том, что у полупроводника между заполненной зоной и зоной проводимости имеется некоторый интервал, вообще говоря, не слишком большой по сравнению с кТ . Это значит, что некоторые значения энергии являются для электронов запретными , и если построить диаграмму энергетических уровней полупроводника, отметив горизонтальными линиями значения энергии (см. рис. 31, б), то между уровнями, которые заняты электронами, и между группой свободных уровней окажется запрещенная зона . Следовательно, чтобы оторвать электрон, осуществляющий связь данного атома с соседями, от его хозяев и переместить его к другому атому, находящемуся на большом расстоянии от данной связи, придется затратить некоторую энергию А (перескочить через запрещенную зону значений энергии). Зато электрон, оказавшись около атома, не имеющего возможности использовать его для связи, приобретает свободу движения и станет электроном проводимости. Покинутое им место ( дырка ) также может двигаться и будет вести себя как положительный заряд. У полупроводников значения энергии, отвечающие запрещенной зоне, не особенно велики и уже энергия теплового движения оказывается достаточной для перевода части электронов в зону проводимости. [c.154]

    Отметим, что дуплицированные структуры, обладающие вращательной симметрией, состоящие 43 хиральных элементов одного знака, имеют значительно больше преимуществ перед зеркально симметричными структурами, построенными из хиральных элементов противоположных знаков, и также пригодными для обеспечения термодинамической обратимости переноса зарядов по ССИВС. Первый тип структур может синтезироваться с помощью одного механизма синтеза и спонтанно собираться путем самосборки, без каких-либо дополнительных устройств. В те же время второй тип структур требует наличия двух механизмов синтеза, раздельно для правых и левых хиральных изомеров, механизмов сегрегации для правых и левых изомеров, а также специальных устройств, обеспечивающих соединение правых и левых структур. [c.82]

    Коллинз и Джаната [38] показали, что описанная в работе [37] мембрана реагирует на изменения концентраций многих небольших неорганических ионов в растворе и что через эту мембрану может проходить постоянный ток. Следовательно, граница раздела этой мембраны и раствора не поляризована. Аналогичные результаты были получены и при изучении мембран, изготовленных только из полимеров (ПВХ, полистирола, блоксополимера полистирол-полибутадиен) [6]. Оказалось, что по сопротивлению переносу заряда такие мембраны располагаются между хорошими ионоселективными мембранами и поляризованными электродами. Смешанный потенциал границы раздела определяется потоками нескольких ионов. Высказывалось предположение, что наблюдаемый отклик на иммунореагенты обусловлен совместным эффектом адсорбции белков и ионного обмена, изменяющим смешанный потенциал [38]. Так как адсорбции белка могут способствовать иммобилизованные иммунореагенты, то легко сделать некорректное заключение о непосредственной связи между выходным сигналом устройства и иммунохимической реакцией. В действительности же выходной сигнал является вторичным явлением, а изменение потенциала обусловлено многочисленными неорганическими ионами. Даже ничтожно малое изменение концентрации любого из этих ионов вызовет изменение смешанного потенциала на границе раздела. Следовательно, основная цель разработки высокоспецифичных иммунохимических сенсоров остается недостижимой, поскольку сенсор, по сути дела, оказывается абсолютно неспецифичным. До настоящего времени не найдено полимера, остающегося идеально поляризованным в водных растворах. [c.416]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевщего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е на катоде Си + + 2е Си б) ре- [c.417]

    Почти полное отсутствие потерь краски достигается при распылении в электрическом поле высокого напряжения (электроокрашивание). Метод основан на переносе заряженных частиц краски в электрическом поле высокого напряжения, создаваемом между системой электродов, один из которых — короиирующее краскораспы-ляющее устройство, другой — окрашиваемое изделие. К краскораспыляющему устройству подводят высокое напряжение (обычно отрицательного знака), изделие заземляют. Лакокрасочный материал поступает на коронирующую кромку распылителя, где приобретает отрицательный заряд и распыляется под действием электрических сил, после чего осаждается на поверхности заземленного изделия. Метод широко применяют для окраски металлических изделий, а в, ряде случаев и для окраски изделий из дерева, стеклопластиков, резины и т. п. Окраску производят с помощью стационарных установок на конвейерных линиях и ручными электрораспылителями. Про изводительность зависит от типа и количества распылителей. Наибольший экономический эффект дает применение этого метода в серийно-массовом производстве. [c.161]

    Анодное растворение (или катодное электроосаждение) используют в ртутном кулонометре, представляющем собой прозрачный капилляр, в к-рый помещены два столбика ртуги, разделенные р-ром на основе к.-л. из солей Hg(H). При прохождении электрич. тока через кулонометр на одном из pTjTHbrx столбиков (аноде) протекает ионизация ртуги, а на катоде - восстановление Hg(II) до металла. В результате объем электролита между электродами (индикатор прибора) перемещается по капилляру в сторону анода на величину, пропорциональную интегралу тока по времени протекания. Ртутные кулонометры применяют в разл. устройствах счетчиках времени наработки, счетчиках ампер-часов, времязадающих устройствах и др. Напр., разработаны ртутные кулонометры с полным зарядом 23 Кл, диапазоном рабочих т-р от -30 до 70 "С и погрешностью интефирования 2%, Существует водородный кулонометр, в к-ром при пропускании тока на катоде протекает разряд ионов водорода, на аноде - ионизация мол. водорода. В результате происходит перенос газообразного водорода через пористую перегородку, пропитанную серной к-той, из анодного отсека электродной камеры в катодный, возникает разность давлений, к-рая перемещает индикаторную жвдкость в сторону анодного отсека на величину, пропорциональную кол-ву прошедшего электричества. На основе водородного кулоно-метра разработан счетчик ампер-часов постоянного тока для измерения кол-ва электричества при заряде и разряде аккумуляторных батарей, к-рый имеет порог преобразования 35 ООО А ч при пофешности 4%. [c.461]

    Метод основан на переносе заряженных частиц краски в электрическом поле высокого напряжения, создаваемом между системой электродов, одним из которых является коронирующее краскораспыляющее устройство, другим — окрашиваемое изделие. К краскораспыляющему устройству подводят высокое напряжение (обычно отрицательного знака), изделие заземляют. Лакокрасочный материал поступает на коронирующую кромку распылителя, где приобретает отрицательный заряд и распыляется под действием электрических сил, после чего направляется к заземленному изделию, осаждаясь на его поверхности. Метод широко применяют для окраски металлических изделий, а в ряде случаев и для окраски изделий из неметаллических материалов — дерева, стеклопластиков, резины и т. п. [c.335]

    Здесь описан процесс измерения для двух фотоэлементов. Измерение для нескольких фотоэлементов программы осуществляется автоматически и последовательно друг за другом. Сначала заряд конденсатора фотоэлемента линии сравнения переносится на Сер, затем автоматическое устройство последовательно делает это же по очереди со всеми конденсаторами фотоэлементов аналитических линий, переводя их в усиленном и логарифмированном виде на соответствующие конденсаторы С ан После этого каждый из Са подключается навстречу конденсатору Сер и ламповый вольтметр измеряет для каждого С/ан разность потенциалов между ним и С,-а одновременно самописец записывает последовательно все измерения. На записи получается ряд максимумов на разньих уровнях, против которых читается концентрация, если каждый канал проградуирован предварительно по эталонам. Величина максимума на записи самописца пропорциональна логарифму относительной интенсивности аналитической пары линий. В связи с тем, что работа всей установки проходит в области линейности, аналитические кривые в соответствии с (4.6) могут представляться в виде прямых. [c.106]

    Димерная структура фотоактивного Бхл в бактериальных РЦ вызывает интерес исследователей, тем более, что есть указания на подобное устройство первичного донора электрона и у высших растений. Возможно, что такое строение фотоактивного пигмента обеспечивает какие-то определенные преимущества в первичном акте фотосинтеза. Так, высказываются предположения, что димерная структура Р способствует эффективному первичному захвату фотовозбуждения до отрыва электрона и переноса его в цепь переносчиков. Это происходит благодаря сверхбыстрому разделению зарядов в самом димерном комплексе с быстрой (за сотни фемтосекунд) сопутствующей поляризацией ближайшего белкового окружения. Имеются и доводы в пользу прочной стабилизации во времени положительного заряда на Р, образованного при его фотоокислении, в результата делокализации дырки по структуре димера. Это способствует замедлению бесполезных обратных рекомбинационных процессов. Последнему благоприятствует в димере наличие большого числа степеней свободы для небольших структурных изменений, которые сопровождают фоторазделение зарядов (см. гл. XXVHI). [c.311]

Рис. 19-11. Метод фиксации напряжения, с помощью которого изучают поведение ионных каналов, измеряя ток, протекающий через плазматическую мембран , когда мембранный потенциал поддерживается на каком-либо постоянном уровне. Используются два внутриклеточных электрода - один для контроля мембранного потенциала, а другой для введения в клетку гока определенной величины. Ток, входящий в клетку через электрод, вытекает наружу через ионные каналы в плазматической мембране на рисунке эта цепь выделена цветом. До тех пор пока мембранный потенциал имеет постоянную величину, ток 1, входящий в аксон через электрод, полностью уравновешивается суммарным током, вытекающим из клетки через всю поверхность аксона (в противном случае общий заряд внутри клетки изменился бы, что привело бы к сдвигу мембранного потенциала). Мембранный потенциал можно изменять, уменьшая или увеличивая ток. вытекающий наружу. Электронное устройство, фиксирующее напряжение, следит за мембранным потенциалом V и регулирует величину тока ] гаким образом, чтобы поддерживать V на постоянном уровне любое небольшое отклонение от заданного значения Ус автоматически приводит к изменению величины тока, благодаря чему мембранный потенциал не отклоняется от фиксированного значения У= Ус. Для того чтобы выяснить, как изменяется поведение мембранных каналов с течением времени, нужно резко переключить потенциал с одного фиксированного уровня на другой и проследить за соответствующими токами с помощью осциллоскопа. Измеряя величину тока при разных концентрациях Ма и в среде, можно вычислить, какая часть трансмембранного тока переносится теми и другими ионами, и определить вклад в этот ток N -селективных и К - селективных каналов. Метод фиксации напряжения может быть приспособлен для анализа поведения отдельных молекул, образующих ионные каналы, которые находятся в маленьких участках мембраны, закрывающих отверстие микроэлектрода в этом случае методику называют методом пэтч-клампа . Рис. 19-11. <a href="/info/1408373">Метод фиксации напряжения</a>, с помощью которого изучают <a href="/info/263258">поведение ионных</a> каналов, измеряя ток, <a href="/info/1117739">протекающий</a> <a href="/info/510621">через плазматическую</a> мембран , когда <a href="/info/4005">мембранный потенциал</a> поддерживается на каком-либо постоянном уровне. Используются два <a href="/info/511085">внутриклеточных электрода</a> - один для <a href="/info/1890338">контроля мембранного</a> потенциала, а другой для введения в клетку гока <a href="/info/39290">определенной величины</a>. Ток, входящий в <a href="/info/200488">клетку через</a> электрод, вытекает наружу <a href="/info/104398">через ионные</a> каналы в плазматической мембране на рисунке эта <a href="/info/1708918">цепь выделена</a> цветом. До тех пор <a href="/info/1339391">пока мембранный потенциал</a> имеет <a href="/info/500043">постоянную величину</a>, ток 1, входящий в аксон <a href="/info/1500069">через электрод</a>, полностью уравновешивается <a href="/info/1043804">суммарным током</a>, вытекающим из <a href="/info/200488">клетки через</a> всю поверхность аксона (в противном случае <a href="/info/1735774">общий заряд</a> <a href="/info/1409039">внутри клетки</a> изменился бы, что привело бы к сдвигу <a href="/info/4005">мембранного потенциала</a>). <a href="/info/4005">Мембранный потенциал</a> <a href="/info/1643194">можно изменять</a>, уменьшая или увеличивая ток. вытекающий наружу. <a href="/info/39401">Электронное устройство</a>, фиксирующее напряжение, следит за мембранным потенциалом V и <a href="/info/130915">регулирует величину</a> тока ] гаким образом, чтобы поддерживать V на постоянном уровне любое небольшое отклонение от заданного значения Ус <a href="/info/1815560">автоматически приводит</a> к <a href="/info/1712151">изменению величины тока</a>, благодаря чему <a href="/info/4005">мембранный потенциал</a> не отклоняется от фиксированного значения У= Ус. Для того чтобы выяснить, как изменяется <a href="/info/1488993">поведение мембранных</a> каналов с течением времени, нужно резко переключить потенциал с одного фиксированного уровня на другой и проследить за соответствующими токами с помощью осциллоскопа. <a href="/info/1545274">Измеряя величину</a> тока при <a href="/info/30656">разных концентрациях</a> Ма и в среде, можно вычислить, какая часть трансмембранного <a href="/info/350615">тока переносится</a> теми и <a href="/info/366848">другими ионами</a>, и определить вклад в этот ток N -селективных и К - селективных каналов. <a href="/info/1408373">Метод фиксации напряжения</a> может быть приспособлен для <a href="/info/442698">анализа поведения</a> <a href="/info/362978">отдельных молекул</a>, <a href="/info/488539">образующих ионные</a> каналы, <a href="/info/1597898">которые находятся</a> в маленьких участках мембраны, закрывающих отверстие микроэлектрода в этом случае методику называют методом <a href="/info/1339534">пэтч</a>-клампа .
    Генератор Ван-де-Граафа принадлежит к числу существенно низкотоковых устройств. Мощность генератора ограничивается эффектами, связанными с накоплением пространственного заряда в точке, где заряд переносится па ремень, невозможностью передачи через ремень большего тока и низкими скоростями ремня. Этими принципиальными трудностями отчасти и обусловлено появление большого числа высокотоковых устройств с более низкими напряжениями (на 3 млн. в и ниже). [c.58]


Смотреть страницы где упоминается термин Устройства переноса заряда УПЗ : [c.381]    [c.111]    [c.35]    [c.194]    [c.611]    [c.16]    [c.49]    [c.557]    [c.228]    [c.219]    [c.68]    [c.12]    [c.300]   
Аналитическая лазерная спектроскопия (1982) -- [ c.512 , c.513 ]




ПОИСК





Смотрите так же термины и статьи:

Перенос заряда



© 2025 chem21.info Реклама на сайте