Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Постоянная ионизации воды

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]


    Как видно из значения константы ионизации, вода в обычных условиях ионизирована крайне мало. Поэтому можно считать, что концентрация воды [Н2О] — величина постоянная она равна [c.144]

    Блок измерения температуры действует по принципу мостика Уитстона на постоянном токе с термистором в качестве датчика температуры. Сигнал с мостика подается на усилитель, снабженный показывающим микровольтметром, и записывается на самописце с расширенными пределами. Для проверки калориметра в нем определялась теплота ионизации воды при 25°. Полученное значение 13,34 0,02 ккал/жо гь прекрасно согласуется с общепринятым значением 13,34 ккал/моль [116, 117]. Описанный калориметр позволяет измерять изменение температуры на 0,01° и тепловой эффект, равный 1 кал, с точностью, не меньшей 0,1%. [c.60]

    Свойства и реакции 2-аминоэтансульфокислоты и ее производных. Как отмечено выше, таурин обладает слабо выраженными кислотными свойствами. Определение константы ионизации дало различные величины, причем два более новых значения [170] составляют 1,8-10" и 5,77-10 . Водные растворы таурина имеют диэлектрическую постоянную выше, чем у воды, причем она увеличивается пропорционально концентрации раствора 171]. Аналогичное действие оказывают другие солеобразные соединения, в которых положительные и отрицательные ионы, присутствуя в одной молекуле (двухполярные ионы), создают постоянные диполи. В кислом растворе таурин чрезвычайно устойчив к действию окисляющих агентов. Он не вступает в реакцию с серной кислотой, кипящей азотной кислотой, царской водкой или сухим хлором [172]. Однако при сплавлении таурина с углекислым натрием и азотнокислым калием сера полностью превращается [c.134]

    Из курса качественного анализа известно, что в який водный раствор, независимо от его реакции, вследствие ионизации воды содержит Н+- и 0Н--И0НЫ. Произведение концентраций указанных ионов при постоянной температуре сохраняет (приблизительно) постоянное значение. При 25°С во всяком водном растворе ионное произведение воды равно  [c.233]

    В хлоридных растворах почти на всех нерастворимых анодах разряд ионов С1- подавляет другие процессы, и в растворе происходит накопление ионов ОН- и подщелачивание жидкости. Однако в результате электродных процессов в прианодном слое всегда наблюдается кислая среда, а в прикатодном — щелочная, поэтому в межэлектродном пространстве от анода к катоду среда изменяется от кислой к щелочной, независимо от реакции исходного раствора, т. е. в объеме обрабатываемой в межэлектродном пространстве жидкости всегда есть слои с нейтральным pH. Наличие нейтральных слоев и постоянная ионизация воды создают в процессе электролиза хлоридных растворов благоприятные условия для окислительно-восстановительных процессов, катализируемых ионами Н+ и 0Н . Если учесть, что наибольшая скорость кислород-хлоридного восстановления активного хлора приходится на нейтральную среду, то этим и объясняются определенные преимущества электролиза перед обычным хлорированием. [c.109]


    Количественной характеристикой собственной диссоциации (ионизации) растворителя является константа К, - ионное произведение протонного растворителя. Для воды произведение концентраций ионов водорода и гидроксид-ионов при данной температуре является величиной постоянной - это ионное произведение воды (разд. 6.5.5). Учитывая, что нон водорода в водном растворе существует в виде иона НзО, формулу ионного произведения воды точнее следует записать так  [c.297]

    Анион является слабым донором электронной пары или слабым акцептором протона воды. В этом случае водородная связь между анионом и гидратирующей молекулой воды не переходит в ковалентную и реакция химического взаимодействия практически не идет. Следовательно, процесс ионизации воды не нарушается и pH раствора остается постоянным. Так ведут себя слабые доноры электронных пар—анионы СР, Вг , 1 , N0 , СЮГ, [c.136]

    При изменении концентрации ионов Н или ионов ОН степень ионизации воды будет соответственно изменяться, но концентрация неионизированных молекул будет при этом оставаться практически постоянной. [c.34]

    Влияние среды. Данные, приведенные в таблице на стр. 42—43, относятся к водным растворам. Если к водным растворам прибавляются органические растворители, как, например, этиловый спирт, метиловый спирт и ацетон, с более низкими диэлектрическими постоянными, чем вода, условия равновесия изменяются. Прибавление спирта к водному раствору понижает константу ионизации слабых кислот и оснований. Следовательно, кислотные индикаторы становятся более чувствительными к водородным ионам к присутствии органических растворителей, и их интервал перехода окраски будет смещен в сторону более высоких значений pH [см. уравнение (2)  [c.45]

    Если растворимость осадка без учета гидролиза меньше 10-9 моль/л, то ионы ОН-, выделяющиеся в результате гидролиза соли, практически не нарушают равновесия ионизации воды и [Н+] = 10" моль/л можно считать величиной известной и постоянной. Расчет в этом случае проводят, как и в примере 4.15. ь [c.50]

    Кинетические результаты обычно выра кают в терминах концентрации реагентов. Это не представляет трудностей, если кислотно или основно катализируемые реакции изучают в присутствии известных концентраций добавленной кислоты или иона гидроксила. Однако измерения скорости с применением для определения концентрации кислоты или основания значений pH приводят к константам скорости для кислотно или основно катализируемых реакций, основанным на активностях, а не на концентрациях реагентов. Это связано с тел , что pH является мерой активности ионов водорода, а Кю — константа ионизации воды, постоянная при данной ионной силе только для активностей [уравнение (39)]  [c.431]

    В разбавленных растворах концентрация воды — величина практически постоянная. Поэтому произведение К- [Н2О] также величина постоянная Ка — это константа ионизации кислоты. [c.138]

    Электролитическая ионизация вызывается взаимодействием полярных молекул растворителя с частицами растворяемого вещества. Это взаимодействие приводит к поляризации даже преимущественно ковалентных связей, как, например, в хлороводороде. При растворении этого газа в воде происходит образование ионов водорода и хлора за счет ослабления связи Н С1 в среде с большой диэлектрической постоянной. Переход ионов в раствор сопровождается их гидрата-, цией  [c.152]

    Образующаяся сажегазовая смесь при проходе через трубопровод-активатор дополнительно выдерживается при высокой температуре в течение некоторого времени, достаточного для разложения углеводородов, которые не успели разложиться в печи. Общее время пребывания сажегазовой смеси при высокой температуре составляет 2—4 сек. В испарительном холодильнике сажегазовая смесь охлаждается за счет испарения воды, подаваемой форсунками внутрь холодильника, до 250—350 °С и затем поступает в электрофильтр. В электрофильтре под действием электрического поля высокого напряжения (60—70 кв) происходит ионизация частиц сажи, вследствие чего заряженные частицы сажи при движении сажегазовой смеси через электрофильтр начинают перемещаться по направлению к электродам электрофильтра и оседают на них. Осадительные электроды, состоящие из набора отдельных стальных прутков, присоединяются к положительному полюсу источника постоянного тока. Периодически электроды с помощью специального механизма встряхивают, при этом сажа падает в бункер электрофильтра, из которого удаляется шнеком. Далее сажа подается в сепаратор для отвеивания. Отвеянная сажа поступает в гранулятор, представляющий собой вращающийся барабан. Гранулированная сажа просеивается для отбора гранул, нужной величины — 0,5—1,5. им, остальная сажа подается на грануляцию. [c.153]


    Крупные стальные конструкции в системах водоснабжения обеспечиваются катодной защитой при помощи электролитических анодов. Аноды могут быть изготовлены из самых различных материалов, например из графита, угля, платины, алюминия, железа или стальных сплавов. Они заряжаются путем присоединения к положительной клемме источника постоянного тока, обычно выпрямителя, в то время как защищаемая конструкция соединяется с отрицательной клеммой. Электрический ток переносит электроны к защищаемой стальной конструкции, предотвращая ионизацию и, следовательно, коррозию. На рис. 7.27 показано применение катодной защиты для внутренних поверхностей приподнятого над землей резервуара для хранения воды. В некоторых случаях (в зависимости от состояния резервуара и химических. свойств воды) гальванические аноды используются вместо выпрямителя или в комбинации с ним. Наружные поверхности подземных резервуаров защищают от коррозии, помещая аноды в окружающий резервуар грунт. За исключением особых случаев, системы катодной защиты не применяются для защиты труб водораспределительной сети из-за своей высокой стоимости. [c.215]

    Показатель п для различных металлов составляет Mg, Мп — 2 2п — 1,1 Ре — 0,42 5п — 0,13 Л1 — 0,63. Коррозия конструкционных материалов в среде нефтепродуктов, которые практически нейтральны, с примесью воды происходит с кислородной деполяризацией, и ее скорость определяется скоростью катодной реакции ионизации Кр. Влияние pH в нейтральной области невелико для железа 4—10, цинка 7—10, свинца 6—8, меди 5—11. Это объясняется тем, что труднорастворимые продукты коррозии этих металлов стабилизируют pH у поверхности корродирующего металла и коррозия протекает практически при постоянном значении pH. Скорость коррозии зависит ог концентрации и химической природы солей. Это влияние различно. [c.116]

    Детекторы. Самым распространенным и устойчивым детектором является детектор по ионизации пламени (ДИП), обладающий достаточно высокой чувствительностью и универсальностью при анализе органических соединений. Он является основным детектором при анализе ЛС методом ГХ. Недостатком ДИП является сложность работы на нем, поскольку он требует применения трех газов газа-носителя (лучше гелий или ксенон), водорода (или из баллонов, или электролитического, получаемого с помощью генератора водорода—в обоих случаях присутствует пожаровзрывоопасность) и воздуха (из баллонов или из компрессоров). Кроме того, он нечувствителен к молекулам неорганических веществ (вода, фреоны, постоянные газы и т.д.), а также к органическим соединениям, в которых отсутствуют группы С-Н. [c.484]

    В этом выражении нет необ.ходимости принимать в расчет концентрацию самой воды, которую можно рассматривать как величину постоянную. K uop. называют константой гидролиза. Ее можно рассматривать как простую функцию от —константы ионизации кислоты и от К, —-ионного произведения воды (10 прн комнатной температуре, стр. 29). [c.67]

    Соотношение концентраций вещества в органическом растворителе Сз и в воде Сд после достижения динамического равновесия выражается приблизительно постоянной величиной при постоянной температуре и при постоянной степени ионизации, зависящей от pH водного раствора  [c.1063]

    Электролитическая ионизация. Огеиень и константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества. Такие свойства называются коллтативными. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от концентрации раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо [c.152]

    Так как концентрация недиссоциированных молекул воды [Н2О] (вы раженная в молях на литр) очень велика по сравнению с [Н ] и [ОН ], то ионизация воды заметно не изменяет величины [НгО]. Поэтому концентрацию недиссоциированной воды можно считать постоянной величиной. Тогда будем иметь  [c.29]

    Вода способна к самопроизвольной ионизации (самодиссоциации), которая происходит в незначительной степени с образованием ионов (водн.) и ОН (водн.). Степень самодиссоциации определяется ионным произведением воды, равным Кн о = [Н + ][ОН-] = 1,0 10- Это соотношение применимо не только к чистой воде, но и к любым водным растворам. Поскольку концентрацию воды в разбавленных растворах можно считать пракп и-чески постоянной, [Н2О] исключается из выражения для константы равновесия, т.е. из ионного произведения, а также из выражений для констант других равновесий в водных растворах. [c.102]

    Значение диэлектрической постоянной эфира мало (е = 4). Положительные и отрицательные ионы, возникающие в процессе ионизации, остаются по соседству друг с другом, образуя ионную пару. Поэтому растворы, содержащие ионные пары, не проводят ток. Вода же может сначала ионизировать ковалентные соединения (например, кислоты), а затем диссоциировать образовав-щиеся ионные пары на свободные ионы, сольватированные молекулами воды, и тогда раствор будет проводить ток. Реакция воды с соляной кислотой запищется так  [c.189]

    Так, коррозия тепло силового оборудования, протекающая 1В водной среде, может характеризоваться двумя катодными процеосами разрядом ионов водорода и ионизацией молекулярного кислорода, растворенного в воде. Эти п роцессы обу Словливают деполяризацию катодных участкО В микропар. При работе котла СВД и СКД протекан1ие коррозиоиного процесса с водородной деполяризацией имеется постоянно. [c.58]

    НИИ кинетич. энергия относит, движения частиц остается постоянной, но меняется направление их движения, т. е. поток И.И. рассеивается при неупругих процессах кинетич. энергия И.И. мсходуется на ионизацию и возбуждение частиц среды. Для потока электронов характерны упругое рассеяние иа ядрах атомов среды и неупругие процессы-ионизация и возбуждение атомов и молекул при взаимод. с их электронньини оболочками (ионизационные потери) и генерация тормозного излучения при взаимод. с атомными ядрами (радиационные потери). Если энергия электронов не превышает 10 МэВ, во всех средах преобладают иоиизац. потери. Для потока ускоренных иоиов ионизац. потери доминируют при всех энергиях. Энергия, передаваемая заряженной частицей данному в-ву на единице длины ее пути, наз. тормозной способностью в-ва = dE dl ( -энергия, теряемая частицей при прохождении элементарного пути dl). Значение снижается с увеличением энергии заряженных частиц и растет с повышением ат. номера элемента, из к-рого состоит в-во среды. Глубина проникновения заряженных частиц в в-во характеризуется пробегом Л в воде ддя ионов Не с энергией 5,3 МэВ Д составляет 39 мкм, для электронов с энергией 5 МэВ-2,5 см. [c.254]

    Следует, однако, отметить то обстоятельство, что в разбавленных водных растворах кислот концентрация воды оказывается практически постоянной величиной, равной приблизительно 55,5 моль/л, и эту величину целесообразно включить в константу равновесия, которая в таком виде называется константой ионизации кислоты Ка ( кислота по-английски a id ) [c.265]

    На рис 5-10 приведена схема типичной системы ВЭЖХ-МС с движущейся лентой, выпускаемой фирмой р1п1 ап [19] Элюат, выходящий из хроматографической колонки, непрерывно наносится на движущуюся полиимидную ленту (фирмы Кар ) шириной 3 мм После испарения растворителя лента протягивается через вакуумношютные сальники с постоянной скоростью (2 - 3 см/с) в ионизационную камеру, где исследуемые компоненты пробы, оставшиеся на ленте, быстро испаряются под воздействием электрического нагревателя Остатки анализируемых веществ удаляются с ленты при помощи второго нагревателя Ионизация анализируемых веществ осуществляется как методом электронного удара, так и химически Однако в некоторых случаях возникают серьезные трудности вследствие термического разложения термолабильных веществ на ленте еще в процессе удаления растворителя Емкость ленты по отношению к растворителю изменяется в зависимости от природы последнего При больших объемных скоростях иногда удается добиться хороших результатов, прибегая к делению потока Прн увеличении содержания воды в подвижной фазе емкость ленты уменьшается н может достигать всего 0,05 мл/мин В таких случаях более эффективно нанесение пробы на ленту в виде аэрозоля [20] [c.133]

    Таким образом, концентрация гидроксил-ионов, генерируемых свободной основной группой, сильно понижается. Константа диссоциации образующегося метиленового производного, по-видимому, на три порядка меньше константы диссоциации первоначальной аминогруппы [8]. Харрисом была тщательно исследована количественная сторона этого вопроса [9] и было установлено, что если в точке эквивалентности концентрация формальдегида равна 16%, то константы кислотной диссоциации аминокислот в водно-формоловой среде на несколько порядков выше, чем в воде. По закону действующих масс следует ожидать, что величина наблюдаемой константы диссоциации будет зависеть от концентрации формальдегида в растворе. Харрис [9] подтвердил это в отношении глицина. На степень диссоциации в значительной мере влияют органические растворители [10]. Сильно полярные алифатические аминокислоты наиболее растворимы в высокополярных растворителях. В растворителях с низкой диэлектрической постоянной диполярные ионы переходят в незаряженную изомерную форму. Влияние заряженных групп сказывается также и на ионизации. [c.103]

    Зависимость силы кислоты от диэлектрической постоянной растворителя. Выше было показано (стр. 164), что теория протолитического кислотно-основного равновесия предвидит линейную зависимость между 1пЛ лв и / Ее впервые подтвердил Уинн-Джонс сопоставивший опытные данные относительно констант ионизации кислот в воде, метиловом и этиловом спиртах. При этом он считал бензойную кислоту стандартной. [c.175]

    Вопросом о влиянии диэлектрической постоянной растворителя на кислотно-основное равновесие в растворе много занимался Кильпат-рик 5-8б Он нашел что отношение констант ионизации 25 производных бензойной кислоты к константе ионизации бензойной кислоты в воде этиленгликоле, метиловом и этиловом спиртах с значительной точностью выражается уравнением (82)  [c.175]


Смотреть страницы где упоминается термин Постоянная ионизации воды: [c.154]    [c.188]    [c.168]    [c.208]    [c.266]    [c.152]    [c.188]    [c.277]    [c.168]    [c.104]    [c.432]    [c.432]    [c.539]    [c.457]    [c.168]   
Общая химия и неорганическая химия издание 5 (1952) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Постоянные ионизации



© 2024 chem21.info Реклама на сайте