Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость сравнительная характеристика

    Способы получения галогеноводородов. Растворимость их в воде. Сравнительная характеристика кислотных свойств водных растворов галогеноводородов. Сравнительная характеристика восстановительных свойств отрицательных ионов галогенов. Галогено-ангидриды кислот, способы их получения и гидролиз. [c.91]

    Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости б (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств. [c.41]


    По методике [3] концентрат сульфидов, полученный в лабораторных и промышленных условиях окислялся до сульфоксидов. Сравнительная характеристика сульфоксидов приведена в табл. 3. Перед окислением перекисью водорода концентрат перегонялся под вакуумом и отбиралась фракция 250—350°С, из которой получаются сульфоксиды — экстрагенты с ограниченной растворимостью в водных растворах ( 3—7 г/л). Кроме того, была окислена-и фракция сульфидного концентрата 190—250°С с целью испытаний сульфоксидов в качестве флотореагентов. [c.227]

    Влияние природы растворителя на основе сравнительной характеристики оценивается также по параметрам полярности. Последние в обобщенном виде представляют собой величины, пропорциональные разности свободных энергий изучаемого процесса в данном и стандартном растворителях. К числу наиболее используемых параметров полярности относятся плотность энергии когезии, параметр растворимости. Предложена универсальная шкала полярности растворителя [45]. [c.27]

    Сравнительная характеристика растворимости твердых и жидких веществ в различных растворителях [c.349]

    Предполагается, что ртуть в комбинации с катионами металлов образует на металлической поверхности твердое покрытие, препятствующее коррозии и растрескиванию. Металлические полоски из нержавеющей стали марки 304 L горячей прокатки подвергали отжигу и травлению для очистки. Очищенные образцы помещали в испытуемые растворы, в которые добавляли растворимые в воде катионы, и отмечали время до начала растрескивания. Сравнительные характеристики при добавлении нитрата ртути (испытание № 2) и смеси нитратов ртути и цинка (испытание № 3) приведены в табл. /,1.6 [c.258]

    Большинство методов, предложенных для интерпретации данных потенциометрического титрования, основаны на использовании тех или иных характерных свойств потенциометрической (логарифмической) кривой титрования. Сравнительная характеристика наиболее употребительных методов дана в работе [1]. Однако эти методы имеют весьма существенный недостаток, поскольку приводят к нахождению конечной точки титрования (обычно точки перегиба кривой), которая в строгом смысле не совпадает с точкой эквивалентности даже в наиболее благоприятных условиях протекания аналитической реакции высокой концентрации растворов, незначительной растворимости или диссоциации продукта реакции. [c.441]

    Ранее П] нами были изучены термодинамические характеристики растворения и образования азота в предельных одноатомных спиртах. Большой интерес представляет изучение термодинамического поведения азота в предельных углеводородах, алифатических кетонах, альдегидах и одноосновных кислотах предельного ряда. И их сравнительная характеристика. В настоящей работе по данным растворимости [2] были рассчитаны изменения изобарно-изотермического потенциала растворения (Д2°раств.) его энтальпийная (ДЯ°раств.) и энтропийная (—ТА5°раств.) составляющие, изменения энтропии при растворении (Д5°раств.), при образовании полостей (А5а) и энтропия азота в растворах (5°р р) гексана, гептана, октана, нонана, ацетона, метилэтилкетона, диэтилкетона, ме- [c.4]


    На фиг. 10 приведена диаграмма, на которой нанесены сравнительные характеристики растворимости карбидов титана и карби- [c.20]

    Из всего изложенного следует, что в настоящее время научная интерпретация явления пластификации возможна лишь в качественном виде. Баланс между полярными (поляризуемыми) и неполярными компонентами пластификатора, с одной стороны, и соответствующими компонентами полимера, с другой стороны, определяет их взаимную растворимость. Сравнительные релаксационные характеристики полимера и пластификатора, в свою очередь, определяют величину смещения температуры стеклования, а следовательно, пластифицирующее действие пластификатора. Следует иметь в виду, что на релаксационные свойства композиции может оказать влияние поляризация, и поэтому совместимость и пластифицирующее действие пластификатора целесообразно рассматривать совместно. [c.68]

    Сравнительная характеристика степени растворимост [c.344]

    Сравнительная характеристика степени растворимости 391 [c.391]

    Ниже приведены сравнительные характеристики переноса металлов в воде рек (без учета влияния донных отложений и растворимости металлов в речной воде), установленные по фактору обогащения ЕР = (Мв/1Мв)/(Мп/1Мп), где Мв и Мп - средняя концентрация металла в пресной воде и на поверхности почвы, 1Мв, ГМп -- средняя концентрация А1 (используется как индикаторный элемент сравнения) в пресной воде и на поверхности. [c.278]

    Домашняя подготовка. Природные соединения галогенов. Способы получения галогенов в лаборатории и промышленности. Физические свойства. Строение атомов галогенов. Характеристика их окислительно-восстановительных свойств. Сродство к электрону и ионизационный потенциал. Валентность галогенов. Гидролиз хлора, брома и иода в водных растворах. Способы получения гало-геноводородов. Растворимость их в воде. Кислородные соединения галогенов. Хлорная известь, ее свойства и применение. Хлорноватая кислота и ее соли. Сравнительная характеристика кислородных соединений галогенов. Применение галогенов и их соединений. [c.180]

    В экспериментальной практике значение 5у определяют применительно к сравнительной большой порции сыпучего материала, состоящей из множества частиц. В этом случае формула (5.6) позволяет рассчитать средний диаметр частиц исследуемой порции сыпучего материала. Параметр определяют на специальном приборе принцип его действия основан на измерении сопротивления, которое оказывает слой определенной порции сыпучего материала потоку прокачиваемого через него газа. Параметр 5 , используют для характеристики свойств сыпучего материала в случаях, когда они зависят от площади поверхности его частиц например, теплопроводность, звукопроницаемость, растворимость, химическая активность во многом зависят от Значения 5у меняются в большом диапазоне (от нескольких сотен тысяч до нескольких миллионов см ) в зависимости от степени дисперсности частиц. [c.147]

    В табл. 7 приведена характеристика остаточных битумов по Абрагаму и др. [63, 264, 543). Битумы, полученные из нефтей ФРГ, обладают большой хрупкостью и малой пластичностью. Растяжимость битумов при 0°С для всех битумов, кроме японских, равна нулю. Для японских битумов из асфальтовых нефтей растяжимость при 0°С сравнительно высока и р-авна 12 см. Температура воспламенения для всех битумов выше температуры вспышки на 40—60 °С. Растворимость в сероуглероде более 98% за исключением калифорнийских битумов с высокой плотностью — 1,158 г/слг (1158 /сг/лг ), для которых растворимость равна 86,2 вес.%. Растворимость в лигроине при 31 °С для всех битумов находится в пределе 35—8С вес.%, причем чем выше плотность битума, тем ниже его растворимость. Содержание мине- [c.98]

    Для третьей группы катионов (во внешней электронной оболочке находится 18 или 18 + 2 электронов) характерны иные зависимости. Большое число электронов во внешней оболочке способствует их сравнительно легкой деформируемости и поляризуемости. Жесткость электронной оболочки не так велика, как у катионов первой группы. В комплексах катионов третьей группы преобладает ковалентная связь, осуществляемая парой электронов, находящихся в совместном владении катиона металла и лиганда. Поэтому во многих случаях изменение устойчивости комплексов катионов элементов одной и той же группы периодической системы хорошо коррелирует со способностью этих катионов к образованию ковалентной связи. С количественной стороны способ1Юсть к образованию ковалентных связей можно описать ковалентной характеристикой, предложенной К. Б. Яци-мирским для объяснения растворимости некоторых малорастворимых соединений. Ковалентная характеристика представляет собой разность между энергией ионизации атома и теплотой гидратации образующегося иона. Чем больше энергия ионизации, тем больше энергии выделяется при обратном процессе — присоединении к нону электронов, которые отдает лиганд при образовании комплексного иона. С другой стороны, чем меньше теплота гидратации, тем меньше [c.254]


    Важная физико-химическая характеристика макроциклических металлокомплексов — их растворимость в различных неводных растворителях и сравнительно небольшая растворимость в воде Это свойство можно использовать для перевода в неводный раствор солей катионов металлов с весьма активными анионами (МпО . ВН7, Н и др.). [c.15]

    Остановимся сначала на влиянии поверхности твердого носителя на свойства нанесенной на нее неподвижной фазы. При добавлении к белому диатомитовому носителю 0,2—0,3% неподвижной фазы вся поверхность носителя покрывается слоем жидкости. Для образования подобного же монослоя неподвижной фазы на розовых носителях, обладающих большей поверхностью, необходимо нанести 0,5% жидкости. При дальнейшем добавлении неподвижной фазы к носителю параллельно происходят два процесса увеличивается толщина адсорбированного слоя жидкости и заполняются поры носителя. Жидкость, заполняющую поры носителя, называют капиллярной и ее параметры практически адекватны характеристикам чистой жидкости. На свойства жидкости в адсорбированном слое влияет природа поверхности твердого носителя, которая проявляется лишь на сравнительно небольших расстояниях —не более 5 монослоев неподвижной фазы. Например, плотность адсорбированного слоя жидкости выше такого же показателя для чистой жидкости, и что самое важное, коэффициенты распределения жидкость — газ различаются для чистой (капиллярной) и адсорбированной жидкости коэффициент распределения ниже для адсорбированной жидкости, чем для капиллярной вследствие энтропийного эффекта. Последний проявляется вследствие большей плотности адсорбированного слоя жидкости и, соответственно, большего ограничения передвижения и вращения молекул сорбата в плотной среде. При 10—15% неподвижной фазы, нанесенной на носитель, растворимость в адсорбированном слое жидкости может изменить объем удерживания от 5 до 10%. Особенно велико влияние адсорбированного слоя жидкости на значения объема удерживания при использовании колонок с небольшим количеством неподвижной фазы на носителе (менее 5%). Однако для относительных характеристик удерживания влияние адсорбированного слоя жидкости на данные удерживания падает вследствие эффекта компенсации. [c.37]

    Размеры и вес молекулы являются наряду с элементарным составом ее важнейшими характеристиками. Молекулярный вес служит зачастую единственным признаком, позволяющим отличить одно вещество от другого. Различия в молекулярном весе играют роль во всех обычных физических методах разделения. Так, высшие члены гомологического ряда имеют, как правило, более высокие температуры плавления и кипения и обладают меньшей растворимостью по сравнению с низшими гомологами. Однако на практике проявляются в первую, очередь другие свойства веществ, такие, как полярность или распределение электронной плотности, которые в основном и определяют их поведение при кристаллизации, перегонке, экстракции, а также очень часто и при хроматографировании различия же в молекулярном весе при этом не столь ощутимы. Отбор по размерам — довольно обычный метод упорядочения в макромире — нашел применение на молекулярном уровне сравнительно недавно. Естественно, при разделении веществ по молекулярному весу другие их свойства также играют определенную роль. [c.11]

    Растворимые в полимере органич. красители применяются сравнительно редко для окрашивания П. п., гл. обр. прозрачных. Их основной недостаток — невысокая стойкость и миграция. Наиболее употребительны минеральные и органич. пигменты (см. Красители). Помимо спектральных характеристик, термо- и светостойкости, суш,ественно важна дисперсность пигментов, от к-рой зависит равномерность окрашивания материала. [c.403]

    Полиалкиленгликоли и их производные. Эти синтетические жидкости выпускаются как смазочные материалы двух основных типов растворимые и не растворимые в воде [10] кроме того, они различаются по вязкости. Они представляют особый интерес для приготовления консистентных с.мазок, практически не действующих на резины из натурального и синтетического каучуков. Жидкости имеют хорошие вязкостно-температурные характеристики и смазывающие свойства и низкую температуру застывания, но при температуре выше 150 °С вследствие высокой летучести имеют лишь сравнительно непродолжительный срок службы в подшипнике. [c.250]

    Методом растворимости было установлено, что максимальное координационное число Ag (I) в пиридиновых комплексах равно двум, а константа нестойкости образующегося в системе комплекса [AgPy2]+ 7,8 10 т. е. ниже, чем константа диссоциации соответствующего медного аналога. Вследствие различия величин координационных чисел одно- и двухвалентной меди сравнительная характеристика устойчивости их комплексов затруднена. [c.190]

    Растворимость галогенидов натрия изучалась как в растворах едкого натра, так и в аммиачных растворах с целью выяснения сравнительной характеристики растворов NaOH и NHg как растворителей. [c.105]

    Гуминовые кислоты в виде солей аммония обладают физиологической активностью. В настоящее время накоплен обширный материал, подтверждающий положительные биологические свойства гуматов. Физиологическое и стимулирующее действие природных гуминовых кислот на высшие растения проявляются по разному гормональное воздействие улучшение проникновения минеральных элементов через корни растений в виде гуминоминеральных соединений участие в физиологических процессах роста. Как установлено рядом исследователей, гуминовые кислоты могут проникать не только в отдельные органы растений стебель, листья, корень), но также и в отдельные клетки, достигая их составляющих, вплоть до ядра. Гуминовые кислоты в виде растворимых солей усваиваются растениями, принимая активное участие в процессах жизнедеятельности растительных клеток, оказывая активное влияние на биоэнергетику растения, способствуют ускорению синтеза рибонуклеиновых кислот, а следовательно, и белка в целом. Участие гуминовых кислот в процессе жизнедеятельности растения приводят к ускорению и улучшению обмена веществ. Можно отметить также защитную функцию гуминовых препаратов, которые, усваиваясь растениями, повышают их устойчивость к выраженным факторам температурному воздействию, химическому, радиации и т. д. В работе показано стимулирующее влияние гуминовых кислот, веществ как на развитие растений, так и на использование ими азота при внесении в качестве стимуляторов гуминовых препаратов. Таким образом, гуминовые вещества являются необходимой составной частью почв и способствуют нормальному развитию растений. При обеднении почвы гумусовыми веществами возникает необходимость дополнительного их внесения, что дост аточно легко сделать, если их вносить в виде физиологически активных водорастворимых солей гуминовых кислот-гуматов, которые при концентрации тысячных долей процента оказывают стимулирующее действие на растительные организмы. Разнообразный исходный материал, используемый для получения гуматов, методы извлечения отражаются на конечном продукте, поэтому проводить сравнительную характеристику предлагаемого продукта с известными гуматами К и Ыа достаточно трудно. Для оценки физиологической активности препарата была предложена методика лабораторных испытаний в качестве стимулятора роста и развития растений, оп-робированная на кресс-салате. Испытание препарата в условиях защищенного грунта показали эффективность его применения для предпосевной обработки овощных культур. При такой обработке активизируется стартовое начало, что положительно сказывается в течение всего периода вегетации и на конечном урожае. [c.97]

    На этой основе были рассчитаны константы устойчивости три-иодидных комплексов, а также многочисленные значения констант устойчивости иода с другими ионами галогенов. Анализ уравнения (1.15) показывает, что зависимость растворимости от концентрации комплексообразующей соли связана с действием двух факторов первый определяется высаливающим действием электролита, а второй -комплексообразованием. Конкуренция этих двух вкладов может привести к тому, что зависимость растворимости от концентрации будет изменяться по кривой с максимумом. Такие зависимости наблюдаются при растворении иода в растворах иодидов, хлоридов, бромидов, тиоцианатов, щелочных и щелочно-земельных металлов [3]. Таким образом, константа устойчивости трииодидных комплексов наряду с параметрами высаливания является характеристикой, позволяющей предсказать зависимость растворимости иода от состава электролитной среды. Необходимо отметить, что константа устойчивости трига-логенидных комплексов очень сильно зависит от природы образующих их ионов и молекул. В работе [42] приводятся сравнительные данные по устойчивости комплексных ионов различного состава при стандартной температуре  [c.28]

    По объему производства вискозные волокна обычного типа в нашей стране занимают ведущее место. Увеличение производства этих волокон объясняется их высокими санитарно-гигиеническими характеристиками, меньшей стоимостью по сравнению с хлопком, а также дефицитом последнего. Вискозные волокна используют в чистом виде для производства штапельных тканей, а также в смесях с хлопком и шерстью при получении бельевых, плательных и костюмных тканей и трикотажного белья. Во многих странах практически во все хлопчатобумажные ткани и трикотаж в целях экономии хлопка добавляют до 10—20% вискозного волокна [27]. В табл. 8.3 приведены свойства основных видов вискозных волокон. Обычное вискозное волокно хлопкового типа выпускается с линейной плотностью 0,17—0,20 текс. Его прочность колеблется в пределах 22—25 сН/текс, потеря прочности в мокром состоянии достигает 45—50%. Удлинение не должно превышать 24%. Модуль упругости в мокром состоянии сравнительно низок и не превышает 30—40 сН/текс. Степень полимеризации обычно находится в пределах 300—320, однако в некоторых случаях снижается до 280. Эту величину следует рассматривать как нижний допустимый предел. Растворимость в 6%-ном растворе NaOH является критерием применимости данного волокна для выработки тканей, подвергающихся щелочным обработкам — мерсеризации, щелочной отварке и отбелке. У обычного штапельного волокна растворимость превышает 12% и может достигать даже 20—22%. Тем не менее, как уже отмечалось в работе [27], с целью удешевления тканей текстильная промышленность вынуждена использовать в качестве добавки обычное вискозное волокно и в тех случаях, когда ткани должны подвергаться щелочным обработкам. [c.278]

    Сравнительно подробно изучена для обобщенного тела расслоения трехком поненгной системы с участием полимерного вещества одна ветвь кривой равновесия а плоскости сечения по составу. Речь идет о так называемых числах осаждения , или числах разбавления , применяемых для характеристики растворяющей способности той или иной жидкости по отношению к заданному полимеру или растворимости полимера того или иного состава по отношению к определенному растворителю. [c.131]

    Действительно, как следует из литературных данных, при газофазном фракционировании на мембранах характеристики полимерной пленки существенно не изменяются под влиянием диффундирующего газа, так как последний обладает весьма низкой растворимостью в пленке. Поэтому, зная скорости диффузии чистых газов и состав исходной смеси, можно вычислить состав продиффундировавщего газа. Однако в случае фракционирования органических паров или жидкостей, обладающих сравнительно высокой растворимостью в пленке полимера, невозможно вычислить состав продиффундировавщего потока на основании известного состава исходной смеси и скоростей диффузии индивидуальных компонентов через мембрану. Проницаемость набухщей мембраны (т. е. мембраны, содержащей растворенные диффундирующие компоненты) значительно отличается от первоначальной ее проницаемости. Равным образом состояние мембраны при диффузии индивидуальных соединений отличается от состояния, достигаемого при диффузии смеси. [c.77]


Смотреть страницы где упоминается термин Растворимость сравнительная характеристика: [c.246]    [c.615]    [c.347]    [c.96]    [c.93]    [c.302]    [c.169]    [c.302]    [c.161]   
Краткий справочник химика Издание 6 (1963) -- [ c.391 ]

Краткий справочник химика Издание 4 (1955) -- [ c.344 ]

Краткий справочник химика Издание 7 (1964) -- [ c.391 ]




ПОИСК





Смотрите так же термины и статьи:

сравнительная



© 2024 chem21.info Реклама на сайте