Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний подвижный

    На установках с подвижным слоем твердого теплоносителя пиролиз мазута и гудрона осуществляют при 580—680 °С. Кратность циркуляции теплоносителя на этих установках 20—30 кг/кг. В качестве теплоносителя применяют оксид алюминия, оксид кремния, углеродистый кальций, кокс, шамот, базальт, кварцевый песок и силикагель 34, 35]. Характеристика коксового теплоносителя приведена на с. 136. Песок имеет истинную плотность 2500— 2800 кг/м и насыпную плотность 1400—1600 кг/м . В нагревателе теплоноситель подогревается при помощи дымовых газов до 900— 950 °С и затем поступает в реактор. Тепловая напряженность нагревателя достигает 10,5 млн. кДж/(м"-ч). Сырье — тяжелые нефтяные остатки — нагревают в печи до 350—500 °С и подают в реактор. К сырью добавляют 40—45% масс, водяного пара. [c.147]


    Свойства линейных полиорганосилоксанов определяются специфичностью их химического строения, в том числе объемом атомов в основной цепи, и типом замеш,ающих групп. Больший объем атома кремния по сравнению с объемом атома углерода является, очевидно, причиной большей подвижности органических радикалов, связанных с атомами 81, и повышенной гибкости [c.475]

    Подвижность атомов галоида в реакциях замещения определяется их отдаленностью от атома кремния. Галоид, находящийся в а-положении [c.486]

    Однако свободные валентности на поверхности алмаза и алмазоподобных твердых тел кремния и германия, если и образуются, то сразу же вступают во взаимодействие друг с другом, в результате чего поверхностные состояния Шокли исчезают тем легче, чем слабее межатомные связи и подвижнее атомы. При этом поверхность в большей или меньшей мере перестраивается. [c.111]

    Как видно, дативное взаимодействие сопряжено с донорно-акцеп-торным, в более общем случае — с образованием ковалентной связи. Главное их отличие в том, что донорно-акцепторное взаимодействие приводит к образованию сг-связи, а дативное — л-связи. Например, в молекулах хлора один атом отдает неподеленную пару электронов на вакантную З -орбиталь второго атома, вследствие чего кратность связи С1—С1 возрастает до 1,2. Непод ленные пары электронов атомов азота и кислорода способны перекрываться с вакантными Зй -орбита-лями атома кремния, вследствие чего основность групп ОН и NH2 понижается, а подвижность протонов возрастает. [c.29]

    Из выражения (121) следует, что коэффициенты диффузии электронов и дырок пропорциональны их подвижностям и поэтому могут иметь различные значения. Например, для германия = = 93 см /свк, Од = 44 см /сек. Значения диффузионной длины в кристаллах германия и кремния находятся обычно в пределах [c.147]

    Электропроводность примесного карбида кремния растет примерно до 600° С, затем ее рост задерживается из-за падения подвижности носителей и даже начинает уменьшаться до появления собственной проводимости, которая начинает проявлять себя в интервале 1400— 1500° С. Ширина запрещенной зоны собственно карборунда a = = 2,86 эв (при 0° К А = 3,1 эв). [c.292]

    Кремний легирован алюминием в концентрации 10 атомов. Электропроводность и равна 4,0 Ом -м- . Определить подвижность дырок. (Плотность кремния 2,4 г/см .) [c.599]

    Главным следствием зависимости выхода вторичных ионов от химического состава поверхности (состава матрицы) является тот факт, что для количественного анализа необходимо определить коэффициенты относительной чувствительности при помощи внутреннего или внешнего стандарта, близкого по составу к анализируемому образцу [10-3.6]. Градуировка по внутреннему стандарту применима для послойного анализа, если общее количество определяемого элемента известно, как, например, в случае ионно-имплантированных примесей в кремнии (из измерений подвижности, в результате которых определяют общее количество имплантированных ионов на единице площади). Далее получают коэффициент относительной чувствительности, интегрируя полученный профиль по глубине. Это значение пропорционально подвижности элемента, которую обычно выражают как общее число ионов на см . [c.363]


    Si lj — тетрахлорид кремния. Подвижная жидкость, дымящая на воздухе. [c.257]

    Колонка 250X 3,2 мм сорбент пористая (8—9 мкм) микросфернческая (около 75 А) двуокись кремния подвижная фаза днхлорметан, насыщенный наполовину водой. Условия эксперимента скорость подвижной фазы 10,5 мл/мин, давление 140,5 атм, температура 27 °С детектирование фотометрия при 254 нм. [c.24]

    Эти соединения имеют большую, чем у германия и кремния, подвижность электронов, например у 1п5Ь, подвиж- [c.250]

    Важнейшие факторы, оказывающие влияние на структуру силиконовых каучуков большая энергия связи звеньев =51—0— ионный полярный характер оснорной цепи, диполь-ный момент которой оказывает влияние на стабильность органических групп, связанных с кремнием подвижность и свободное вращение цепи благодаря большому валентному углу у атома кислорода, связанного с атомами кремния, и простран ственное расположение органических групп в спиралевидной структуре цепи. Этим объясняется то, что у вторичной (надмолекулярной) структуры межмолекулярные силы между цепями по сравнению с другими каучуками малы [1]. [c.22]

    Шариковые катализаторы получают также совместным осаждением гидрогелей окиси кремния и окиси алюминия с последующим формованием их в виде шариков. Они значительно дещевле, чем таблетированные, и применяются в процессах каталитического крекинга с подвижным слоем катализатора (термофор) для получения [c.13]

    Из табл. 6 видно, что СгОз восстанавливается монооксидом углерода ири более низких температурах, чем VjOs и М0О3. Аналогично этому ванадиевые и молибденовые катализаторы не могут легко восстанавливаться этиленом ири температуре его полимеризации, поэтому для достижения высокой активности необходимо использовать промотор, служащий восстановителем. Как показано в табл, 6, температура плавления оксида резко возрастает ири переходе от хрома к ванадию и молибдену. Низкая точка плавления СгОз обеспечивает его подвижность по поверхности оксида кремния и тем самым высокую дисперсность. [c.188]

    И кокс, и рудная часть шихты, кроме полезных составляющих углерода и железа, вносят в доменную печь балласт, в основном глинозем А12О3 и кремнезем 8102, и наряду с этим вредные для конечного продукта вещества, например, серу. Минеральная часть руды и кокса, оксиды кремния и алюминия делают расплавленные примеси чугуна, т.е. шлак, тугоплавкими и плохо отделяющимися от чугуна. Чтобы шлак хорошо отделялся, был легким, подвижным, в доменную шихту добавляют флюсы, которые, соединяясь с оксидом кремйия, дают легкоплавкие подвижные шлаки. Образование шлаков — такой же важнейший процесс, как и образование чуГуна. [c.11]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]

    Вместе с тем адсорбированный атом может вызвать образование электронов проводимости. Пусть, например, атом натрия адсорбируется на поверхности хлористого натрия вблизи иона хлора. Для увеличения связи этот атом может отдать свой электрон одному из положительных ионов решетки. В результате в решетке возникнут нестехиомегричность и электронная проводимость. Введение бора в кремний приводит к образованию ненасыщенного атома кремния, так как валентность бора меньше валентности кремния. Свободная валентность соседнего с бором ненасыщенного атома кремния может захватывать электрон от других атомов кремния. В результате происходит миграция этой свободной валентности по решетке. Если такая валентность окажется на поверхности твердого тела, то она сможет связать адсорбированный атом или молекулу. Естественно, что вследствие образования такой связи молекула может активироваться. Электроны проводимости и дырки как адсорбционные и каталитические центры отличаются от обычных центров, так как они подвижны и их число зависит от температуры. [c.412]


    Отбор химических элементов — этого подвижного строительного материала эволюционирующих систем — выступает прежде всего как весьма красноречивый научный факт. Ныне известно 107 химических элементов. Есть основания полагать, что большинство из них попадает в те или иные живые организмы и так или иначе участвует в жизнедеятельности. Однако основу живых систе.ч составляют только шесть элементов, давно получивших наименование органогенов. Это углерод, водород, кислород, азот, фосфор и сера, общая массовая доля которых в организмах составляет 97,4 % За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем. Это натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт. Их массовая доля в организмах равна примерно 1,6%. Можно назвать еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем (например, водорослей, состав которых определяется в известной мере составом питательной среды). Их доля в организмах составляет около 1 %. Участие всех остальных элементов в построении биосистем практически не зафиксировано. [c.194]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Для германия и кремния в основном действуют первые два механизма рассеяния, которые приводят к различным температурным зависимостям подвижности. Третий механизм рассеяния тоже имеет место, но его влияние в совершенных по структуре 1 истал-лах полупроводников заметно меньше, чем в металлах. [c.130]

    Укажем еш,е на то, что дефекты обладают подвижностью. Перемв ш,ение их по решетке требует некоторой энергии активации, значение которой определяется природой дефектов, структурой решетки и направлением движения дефекта. Де кты могут отталкиваться и притягиваться друг к другу. Так, пустые узлы в подрешетках атомов металла и неметалла притягиваются друг к другу, а одноименные отталкиваются. Электроны притягиваются к анионной вакансии,, образуя F-центры, и отталкиваются от катионной вакансии. ЭлектрО ны втягиваются в места дислокаций и вакансий валентных решеток германия и кремния. Продукты взаимодействия дефектов обладают новыми свойствами. Точечные дефекты взаимодействуют с дислокациями. Вакансии, собираясь в области дислокаций, образуют микрО каверны атомы в междоузлиях, взаимодействуя друг с другом вбли-ЗН дислокаций, образуют скопления атомов примесей, а затем ячейки новой фазы. [c.147]

    Если вводить в кристаллическую решетку германия (кремния) атом галлия или другого элемента 11IA подгруппы, то у атома замещающей примеси не хватит одного электрона для осуществления четырех нормальных связей с соседними атомами германия. Одна из связей будет незаполненной (одноэлектронной), но атом галлия и смежный с ним атом германия будут электронейтральными. Однако при небольшом возбуждении электрон из какой-либо нормальной соседней связи между атомами германия может перейти в место незаполненной связи. Тогда у атома галлия появится отрицательный заряд, а где-то вблизи возникнет дырка (рис. 74). Таким легированием германия (кремния) элементами IIIA подгруппы можно повышать концентрацию дырок, которые станут основными носителями подвижных зарядов, а электроны — неосновными. Так как энергия возникновения дырки вблизи акцепторной примеси Д а тоже порядка сотых долей электрон-вольта, то появление галлия в решетке германия как примеси замещения, по-видимому, приводит к появлению локального уровня Ец вблизи верхнего края валентной зоны (рис. 74,6). Уже при невысокой температуре электроны из валентной зоны переходят на этот акцепторный уровень оставляя дырку в валентной зоне. Полупроводники с избытком дырок (с акцепторными примесями) называются дырочными или р-типа полупроводниками (от лат. positive — положительный). [c.240]

    Важнейшие области применения галлия. Основная область применения галлия — полупроводниковая техника. Галлий образует с элементами группы азота (кроме висмута) соединения типа А" В , которые изоэлектронны полупроводниковым элементам IV группы — германию и кремнию и обладают полупровониковыми свойствами. По сравнению с германием и кремнием соединения А В обладают большей подвижностью носителей тока. Они способны образовывать друг с другом твердые растворы, что позволяет синтезировать из них полупроводниковые материалы со свойствами, меняющимися в широких диапазонах. [c.245]

    Важнейшие области применения. Основн 1Я область применения индия — производство полупроводников. Как к галлий, он является акцепторной примесью, сообщающей германию и кремнию дырочный тип проводимости. Поэтому применяется для создания п—р-переходов. Широкому его применению благоприятствуег то, что он легко смачивает поверхность германия и хорошо сплавляется с ним при низкой температуре. Фосфид, арсенид и антимонид, индия — полупроводники, представляющие большой практический интерес. В частности, антимонид индия обладает исключительно большой подвижностью электронов. Это соединение используется для изготовления датчиков эффекта Холла в приборах для измерения магнитных полей и инфракрас- [c.299]

    ЛИЯ появится отрицательный заряд, а где-то вблизи возникнет дырка (рис. 74). Таким легированием германия (кремния) элементами ША-подгрунны можно повышать концентрацию дырок, которые станут основными носителями подвижных зарядов, а электроны — неосновными. Так как энергия возникновения дырки вблизи акцепторной примеси АЕц тоже порядка сотых долей электрон-вольта, то появление галлия в решетке германия как [c.299]

    Свойства. Кремний — кристаллическое вещество темно-серого цвета с металлическим блe кoмJ Он образует одну устойчивую аллотропную модификацию, структура которой аналогична структуре алмаза (см.рис. 9.1). В отличие от алмаза кремний является полупроводником. Это объясняется тем, что некоторые ковалентные связи между атомами достаточно легко разрушаются, что обусловливает некоторую подвижность электронов в кристалле. [c.177]

    Для объемных (гидр)оксидов кремния (монодисперсные сферические частицы диаметром 0.5 мкм, силохром С-120), алюминия (бемит), олова и железа (гетит) определена адсорбция потенциалопределяющих ионов (Г) и электрофоретической подвижности частиц (11) в зависимости от pH и концентрации фоновых электролитов (ЫаС1, КС1). Определены положения точки нулевого заряда (ТНЗ), изоэлектрической точки (ИЭТ) и рассчитаны величины электрокинетического потенциала ( -с учетом поляризации двойного электрического слоя (ДЭС). Из адсорбционных и элек-трокинетических измерений для исследованных (гидр)оксидов найдены константы диссоциации поверхностных групп, константы образования ионных пар, адсорбционные потенциалы потенциалопределяющих ионов и ионов фонового электролита, степени диссоциации поверхностных групп в ИЭТ и ТНЗ в рамках 2-рК модели заряжения оксидной поверхности. Показано, что использование 2-рК модели в сочетании с моделью ДЭС Грэма позволяет удовлетворительно описать экспериментальные данные только в случае использования переменной емкости ДЭС. [c.107]

    При закачке гелеобразующих композиций в водонагнетательные скважины возможны осложнения в связи со значительным уменьшением приемистости. В связи с этим путем проведения дополнительных измерений и лабораторных экспериментов для восстановления приемистости скважины был предложен ряд реагентов закачиваемая вода и слабый раствор соляной кислоты или слабощелочной раствор дистил-лярной жидкости для промывки скважины от остатков гелеобразующей композиции. Для растворения композиции могут быть использованы слабые (0,2—0,5% по массе) растворы щелочи, применение которых в результате увеличения pH среды превращает гель поликремниевых кислот в натриевую соль кремниевой кислоты — обычное жидкое стекло. В этом случае получается более подвижная форма той же кремниевой кислоты. Если эти мероприятия не дают эффекта, может быть применен бифторид аммония. Этот реагент при контакте с гелем поликремниевых кислот дает прозрачный раствор, содержащий фтористый кремний. В результате данной обработки может быть полностью разрушен гель во всем объеме, так как образуется новое водорастворимое соединение. Для обработки требуется незначительная концентрация реагента. Таким образом, для восстановления приемистости скважин возможны следующие операции  [c.287]

    В зависимости от агрегатного состояния подвижной и неподвижной фаз различают газо-адсорбционную, газо-жидкостную, жидкостно-адсорбционную и жидкостно-жидкостную хроматографию. В газоадсорбционной хроматографии подвижной фазой служит газ, называемый газом-носителем, а неподвижной фазой — твердый адсорбент. В качестве адсорбента в газовой хроматографии используют активированные угли, силикагели, отась алюминия и другие пористые вещества с сильно развитой поверхностью. Так, величина удельной поверхности активированных углей составляет 400—900 м /г. В последнее время в качестве адсорбента начали широко использовать искусственные цеолиты (молекулярные оита) — кристаллы, состоящие из окислов кремния, алюминия и одно- и двухвалентного метал- [c.93]

    Стекло представляет собой иереохлаждеппую жидкость - раствор различньк силикатов - ирострапствеппую полимерную сетку, построенную из кремний-кислородных цепочек. Пустоты в трехмерном скелете заняты катионами щелочпьк металлов, которые удерживаются за счет электростатических полей атомов кислорода. Важным является тот факт, что катионы, находящиеся в пустотах решетки, могут обратимо обмениваться на более подвижные ионы. Стеклянный электрод изготавливается в виде небольшого сосуда из изолирующего стекла в горловине и снециального электродного стекла в мембране (мембрана 1 в форме шарика на [c.53]

    На солонцовых почвах Молдавии испьггано мелиорирующее действие шлама биохимической промышленности, содержащего 41—74 % органических соединений, 0,7—3,2 % общего азота, 0,21—0,32 % подвижного фосфора, а также соединения кальция, серы и кремния. Шлам является кислотным мелиорантом с pH 3,0—4,5, и его внесение одновременно вызывает рассолонцевание почвы и удобряет ее. Прибавки зерна при использовании биохимического шлама достигали 10—15 ц/га. Ежегодно в Молдавии скапливается до 115—120 тыс. т этого ценного удобрения-мелиоранта, что позволяет мелиорировать до 15 тыс. га солонцов в год. [c.286]


Смотреть страницы где упоминается термин Кремний подвижный: [c.380]    [c.122]    [c.79]    [c.335]    [c.44]    [c.305]    [c.202]    [c.45]    [c.253]    [c.295]    [c.380]    [c.64]    [c.380]    [c.146]    [c.53]   
Руководство по химическому анализу почв (1970) -- [ c.377 ]




ПОИСК







© 2024 chem21.info Реклама на сайте