Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфаты восстановление водородом

    Каждая молекула НАД Н независимо от своего происхождения поступает на третью стадию метаболического процесса-окончательный цикл окисления, или дыхательную цепь,-и образует три молекулы АТФ. Каждая молекула ФАД Hj принимает участие в промежуточной части этой стадии и образует только две молекулы АТФ. Дыхательная цепь включает ряд флавинсодержащих белков (флавопротеидов) и цитохромов (рис. 20-23), с которыми взаимодействуют атомы водорода и электроны, образуемые из НАД Н и ФАД Н2, до тех пор пока они в конце концов не восстанавливают О2 в Н2О. Компоненты дыхательной цепи показаны на рис. 21-24. При повторном окислении НАД Н два атома водорода используются для восстановления флавопротеида, а выделяемая свободная энергия используется для синтеза молекулы АТФ из АДФ и фосфата. Флаво-протеид снова окисляется, восстанавливая небольшую органическую молекулу хинона, известного под названием убихинона, или кофермента Q. С этого момента судьбы электронов и протонов восстановительных атомов водорода расходятся. Электроны используются для восстановления атома железа в цитохроме Ь из состояния Fe в состояние Fe а протоны переходят в раствор. Цитохром Ь восстанавливается в цитохром с,. [c.330]


    Никотинамидное кольцо НАД-Нг и изоаллоксазиновое кольцо ФАД расположены в параллельных плоскостях, так что атом азота никотинамида лежит против 2-го атома углерода рибофлавина. Неорганический фосфат соединен с двумя коферментами водородной связью, идущей к МНг-группе никотинамидного кольца. Атом водорода переносится от 4-го атома углерода никотинамидного кольца к атому азота ФАД, занимающему 10-е положение. Одновременный перенос электрона от атома азота никотинамида к С = 0-группе ФАД придает атому азота никотинамида положительный заряд, а С = О-группе ФАД — повышенную электронную плотность. Благодаря положительному заряду атом азота никотинамида притягивается к отрицательно заряженному кислородному атому фосфатного иона с образованием электростатической связи I. Электрон, перенесенный к С = 0-группе, стремится образовать связь 11. В результате возникновения этих двух связей образуется ФАД-Нг Ф. Фосфорилированный ФАД-На представляет собой макроэргическое соединение, которое может фосфорилировать АДФ либо непосредственно, либо в ходе последующего окисления. Согласно изложенной теории, разобщение фосфорилирования и дыхания, а также индуцирование АТФ-азы динитрофенолом обусловлены конкуренцией между ДНФ и 0 неорганического фосфата за четвертичный азот никотинамидного кольца. Эта конкуренция препятствует образованию ФАД-Нг- Ф. Теория Грабе дает удовлетворительное объяснение для структурных потребностей фосфорилирования в дыхательной цепи. Однако, взятая в совокупности со всем механизмом 2-го типа, эта теория не согласуется с данными о том, что способные к восстановлению компоненты дыхательной цепи, по-видимому, не являются промежуточными продуктами в реакциях фосфорилирования. [c.253]

    Титрованию мешают сульфаты (их устраняют добавлением в избытке нитрата бария), ионы трехвалентного железа (их связывают добавлением в избытке фторида или фосфата), бихромат-ионы или перманганат-ионы (мешающее влияние которых устраняется восстановлением их перекисью водорода) и молибдат-ионы. Перекись водорода надо, прибавлять также и в присутствии восстановителей сульфитов, сульфидов. [c.409]

    Считают, что в основе процесса фосфатирования лежат электрохимические реакции, протекающие на поверхности металла (ионизация металла на анодных участках и восстановление водорода на катодных участках). Образующиеся при этом труднорастворимые двух- и трехзамещенные фосфаты [c.456]


    Ре , Мп , Си , сульфаты и фосфаты. Мешают определению индия миллиграммовые количества Аи , Ag , Ре , Си , Зп , Т1 , Hg , Hg , но влияние этих элементов может быть полностью устранено- предварительной обработкой раствора железом, восстановленным водородом. [c.302]

    Синтез других люминофоров, в частности некоторых двойных фосфатов и силикатов, ведут в восстановительной атмосфере, например, в смеси азота с небольшим количеством водорода, необходимого для восстановления активатора (см. стр. 44, 84). В отдельных случаях газообразные восстановители могут быть заменены на твердые (углерод, металлы), вводимые в шихту в виде порошка [8, 9]. [c.60]

    В качестве реагентов используют иодат [206, 567, 1473, 1474, 1541] или перйодат калия [539, 1667, 2000, 2001] и йодную кислоту [99, 1161, 2003]. Обычно реакцию осаждения иодата тория Th(JOз)4 иодатом калия проводят примерно в 6Л/ азотнокислом растворе. Для определения следов тория раствор должен быть 0,5—Ш по НЫОз, так как при более высокой кислотности не достигается количественное выделение иодата тория, правда, избыток иодата понижает растворимость иодата тория. Определению мешают 2г и Т1. и Се [464, 1467] осаждаются иодатом вместе с торием. Поэтому первый предварительно окисляют перекисью водорода [206] для восстановления церия используют перекись водорода или сернистую кислоту [1467]. Небольшие количества фосфатов не мешают. Обычно метод состоит в осаждении иодата тория иодатом калия из холодного раствора, промывании полученного осадка раствором, содержащим иодат калия и азотную кислоту, растворении в избытке азотной кислоты, переосаждении в виде иодата. [c.36]

    Титрованию мешают сульфаты, но последние можно удалить добавлением нитрата бария, а также ионы бихромата и перманганата, влияние которых устраняют восстановлением (например, перекисью водорода). Влияние ионов Ре устраняют добавлением фторидов или фосфатов, которые связывают ионы Ре + в комплексное соединение. [c.47]

    К 500 мл жидкого аммиака при —35 °С добавляют при перемешивании 0,5 г гидратированного окисного нитрата железа и затем 1 г натрия для восстановления этой соли в количестве, достаточном для изменения голубой окраски смеси и получения черной суспензии тонко измельченного металлического катализатора. При дальнейшем добавлении отдельными порциями натрия (37 г) быстро образуется светло-серая суспензия амида натрия и выделяется водород. К этой суспензии за 15 мин добавляют диэтилацеталь хлорацетальдегида (76,5 г), отгоняют аммиак в токе азота и обрабатывают остаток при —70° С холодным насыщенным раствором хлористого натрия для гидролиза пирофорного натриевого производного VI. Колбу соединяют с насадкой и охлажденной до —70 °С ловушкой, конденсату дают нагреться до 0°С и освобождают его от аммиака добавлением водной кашицы кислого фосфата натрия. Нейтральный водный слой замораживают, а верхний жидкий слой отделяют, сушат и перегоняют. Выход этоксиацетилена 21 г (60%) т. кип. 51 °С. [c.265]

    Основные научные работы посвящены изучению механизма фотосинтеза. Показал (1941), что первичный процесс фотосинтеза заключается в фотолизе молекулы воды, в результате чего образуются кислород, выделяющийся в атмосферу, и водород, идущий на восстановление двуокиси углерода. Используя радиоактивный изотоп углерод-14 в качестве метки и метод хроматографии на бумаге, установил последовательность фо-тосинтетического цикла (цикла Кэлвина) ассимиляция двуокиси углерода зеленььми растениями — превращение его в органические вещества — последующее восстановление. Создал (1956) схему полного пути углерода при фотосинтезе, ставшую классической. Предложил модель превращения световой энергии в химическую. Показал, что превращения фосфата пентозы играют большую роль в жизнедеятельности не только растений, но и животных. Изучал вопрос о происхождении и развитии жизни на Земле. [c.279]

    Механизм этой реакции выяснен еще недостаточно. В данной реакции под действием световой энергии при участии хлорофилла и ферментов хлоропластов происходит расщепление воды. Атомы кислорода освобождаются в виде Ог, а атомы водорода затрачиваются для восстановления никотинамид-аденин-динуклеотид-фосфата. Активная группа этого фермента может затем использоваться для восстановления различных соединений. [c.128]

    Фосфиды получают синтезом из компонентов, взаимодействием оксидов металлов с фосфппом, восстановлением фосфатов металлов водородом, осаждением из газовой фазы и другими методами. [c.281]

    Прежде чем приступить к обсуждению высших оксидов этих металлов, необходимо упомянуть, что оба они образуют так называемые оксиды М3О. Вторую модификацию металлического вольфрама, описываемую как р-вольфрам , получают такими методами, как электролиз расплавленной смеси /0э и фосфатов шелочных металлов, или из расплава вольфраматов шелочных металлов при температурах <700 °С выше этой температуры р-вольфрам необратимо переходит в а-воль-фрам. Предполагается [1], что р-вольфрам в действительности является оксидом УзО и что шесть атомов вольфрама и два атома кислорода в элементарной ячейке этого соединения (рис. 29.4) статистически располагаются по восьми позициям (соответственно светлые и заштрихованные кружочки). В оксиде СгзО [2] атомы металла занимают позиции с шестикратной координацией, а атомы кислорода — с двукратной. В то же время показано [3], что р-вольфрам может быть получен с содержанием кислорода меньшим чем 0,01 атома на один атом вольфрама (путем восстановления водородом оксида У02.э), хотя присутствие небольшого количества примесных атомов представляется необходимым для устойчивости структуры р-вольфрама . М03О имеет дефектную структуру анти-В Рз (разд. 9.9.3) в этой структуре девять атомов молибдена статистически занимают девять из двенадцати позиций (ООО) [c.284]


    Попытки окислить калифорний до персульфатом или висмутом не удались, что было доказано отсутствием соосаждения с фосфатом циркония. После выпаривания раствора смеси хлоридов европия, гадолиния и калифорния, последующего дегидрирования в токе НС1 при 200° С и восстановления водородом при 300—500° С, очевидно, получается калифорний (И), так как после растворения восстановленного остатка идет соосаждение калифорния (85%) с EUSO4. [c.409]

    С фосфором Ж. также активно взаимодействует при малых концентрациях он дает с а- и Y-Fe ограниченные твердые р-ры, при больших концентрациях — соединения. Наиболее устойчивы фосфиды ГвдР, т. нл. 1200°, FeoP, т. пл. 1350° и др. Снлавы Ж. с фосфором могут быть изготовлены непосредственным сплавлением компонентов, термич. восстановлением водородом нек-рых фосфатов (FePOi, Fe PaO, и др.), а также электролизом соответствующих соединений Ж. и фосфора. С многими металлами Ж. образует твердые р-ры и соединения (см. Железа сплавы). [c.22]

    Мешающие вещества. Вместе с хлоридами титруются броми-ды и иодиды. Их можно определить отдельно соответствующими методами и содержание их вычесть из результатов титрования. Сульфит-, тиосульфат-, сульфид-, роданид- и цианид-ионы, мешающие определению, следует предварительно окислить кипяче нием с пероксидом водорода в щелочной среде. Органические ве щества в большой концентрации мешают определению. Их сле-> дует предварительно удалить, как описано в разд. 7.14.7.1, или окислить перманганатом калия в щелочной среде с последующим восстановлением пероксидом водорода и отфильтровыванием осадка водного диоксида марганца. Мешает железо(III) в концентрациях, превышающих 10 мг/л его следует связать добав-лением нескольких капель 5 %-ного раствора фосфата натрия. Мешают ионы цинка, свинца, алюминия, никеля и хрома(III) в концентрациях, превышающих 100 мг/л, а хромат ионы в концентрациях выше 2 мг/л. [c.224]

    Вода также непосредственно участвует в метаболизме. Она служит источником кислорода, выделяемого в ходе фотосинтеза, и водорода, используемого для восстановления углекислого газа. При образовании АТФ — важного микроэнерге-тического соединения — из АДФ и фосфата происходит отщепление воды иными словами, фосфорилирование есть не что иное, как процесс дегидратации, происходящий в водном растворе в биологических условиях. Таким образом, знание многих уникальных свойств воды имеет громадное значение для общего понимания физиологии растений и животных. [c.44]

    Реакция восстановления пирувата завершает внутренний окислительновосстановительный цикл гликолиза. НАД ири этом играет роль промежуточного переносчика водорода от глицеральдегид-З-фосфата (6-я реакция) на иировиноградную кислоту (11-я реакция), ири этом сам он регенерируется и вновь может участвовать в циклическом процессе, получившем название гликолитический оксидоредукции. [c.333]

    Транскетолаза, в состав к-рой входит ТДФ,-один из ферментов пентозофосфатного цикла окисления углеводов, являющегося осн. источником восстановленного никотин-амиддинуклеотидфосфата (НАДФН) и рибозо-5-фосфата (первый используется как донор водорода в многочисл. р-циях восстановления, второй входит в состав нуклеотидов и нуклеиновых к-т). [c.564]

    Методы определения алюминия нефелометрированием его купфероната [1034, 1122], фотометрированием фосфора, содержащегося в фосфате алюминия, в виде восстановленной фосфорномолибденовой гетерополикислоты [ПО, 811] и методы, основанные на реакции фторидного комплекса титана и алюминия в присутствии перекиси водорода [455], не представляют интереса. [c.132]

    У аэробных организмов восстановленные формы переносчиков водорода вновь окисляются молекулярным кислородом в цепи переноса электронов, получившей название дыхательной цепи (на рис. 7-1 показано в центральной части рисунка под окружностью). Окисление NADH (восстановленного NAD+) кислородом характеризуется значительным уменьшением свободной энергии (при pH 7 величина ДС составляет —219 кДж-моль ) и сопровождается образованием трех молекул АТР (из ADP и неорганического фосфата). Этот процесс, называемый окислительным фосфорилированием (гл. 10), представляет собой главный путь накопления биологически полезной энергии (в форме АТР), высвобождающейся при расщеплении жиров в организме человека. [c.84]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Восстановление фосфатов водородом, природным газом и другими газообразными реагентами протекает значительно медленнее, чем твердым углеродом. Показано что в присутствии природного газа при температурах до 1250° (до оплавления шихты) восстановление идет преимушественно углеродом, отлагаюшемся при пиролизе метана на поверхности и в порах фосфорита при температурах выше 1300° — водородом, образующимся при пиролизе метана. Для промышленных процессов, протекающих при 1400— 1450°, продувание шихты метаном нецелесообразно, так как восстановление за счет водорода идет медленнее, чем металлургическим коксом. В то же время выделившийся при пиролизе метана углерод обладает большей восстанавливающей способностью, чем кокс. Взаимодействие природных фосфатов с газообразными восстановителями ускоряется в присутствии солей натрия и магния, снижающих температуру плавления шихтыИз щелочных солей наиболее активно действует добавка Ыа2504. Максимальное влияние флюсов наблюдается при температуре плавления шихты (- 1300°). [c.155]

    Бромистая кислота НВгОа и ее соли сравнительно мало исследованы. НВгОа образуется в качестве промежуточного продукта упомянутых выше реакций, а также в процессе гидролиза фторида брома, окисления бромид-иона броматом или восстановления последнего перекисью водорода в кислом растворе. Получают ее взаимодействием трехкратного избытка 0,015—0,075 М раствора ацетата серебра с бромной водой в присутствии фосфата натрия. Во времени концентрация НВгО падает, НВгОд нарастает, а НВгОа меняется по кривой с максимумом при = 14 час., которому соответствует 0,00084 М раствор этой кислоты. [c.31]

    Кроме того, раствор комплекса марганца (III) готовят восстановлением КМПО4 перекисью водорода [20] в присутствии фосфата. [c.20]

    Система, в которой лигандом является триметилфосфит, более сложна, поскольку в ходе реакции фосфит окисляется до фосфата, а источником водорода служит вода. Ацетон образуется в ничтожных количествах, и восстановление протекает стехиометрически по фосфиту [190]. [c.75]

    Аминокислоты И их производные не дают волн восстановления, если они не содержат каких-либо восстанавливающихся групп. Если их константа диссоциации больше 10 , то они будут давать волну водорода. Аминокислоты можно определять косвенно путем образования комплексов с металлами и полярографирования этих комплексов. Чаще всего используют комплекс меди, который получают, добавляя аминокислоту к раствору фосфата меди в дннатрийфосфате [120]. Волна появляется между —0,7 и —1,0 в и характеризует содержание аминокислоты в растворе. Для глицина ток пропорцио- [c.385]

    Основные научные работы посвящены химии и технологии минерального сырья и физикохимии металлургических процессов. Создал методы переработки низкокачественных фосфатов, получения фосфора и фосфорной кислоты и утилизации газов и шлаков, образующихся нри переработке фосфатов. Изучал реакции фосфора и его оксидов с углекислым газом, диоксидом углерода и водой. Предложил методы получения мышьяковистых пестицидов. Изучал термодинамику процессов восстановления оксидов, сульфидов и фосфатов металлов. Независимо от П. X. Эм-мета открыл совместно с А. Ф. Ка-пустинским явление термической диффузии в реакциях восстановления закиси железа водородом. Разработал аппаратуру для исследования равновесия в реакциях взаимодействия оксидов металлов с водородом и равновесия распада поверхностного слоя оксида металла на металл и кислород. Руководил работами по использованию в металлургии природно-легированных руд. Принимал участие в геологических изысканиях минерального сырья, организации промышленных предприятий по их переработке и т. д. [c.80]

    Существенным наблюдением является то, что аденозинтрифосфорная кислота образуется в процессе фотосинтеза за счет реакции окисления (дыхания), протекающей параллельно реакциям восстановления. При этом при фотохимических реакциях теряется примерно /3 водорода, связываемого в виде дигидродегидразы, но зато образуются за счет темповой реакции две высокоэргические фосфатные связи, необходимые для последующих синтезов. Реакция образования аденозинтрифосфор-нон кислоты происходит только в присутствии ферментов, содержащихся в митохондриях клеток зеленых листьев. При инкубации хлоропластов, митохондрий, Kol, неорганического фосфата и АДФ был осуществлен фотохимический синтез АТФ (Охоа) [c.261]

    Роль акцептора водорода в глицераль-дегидфосфатдегидрогеназной реакции играет кофермент NAD (рис. 15-6), представляющий собой окисленную форму никотинамидадениндинуклеотида, содержащего витамин никотинамид (разд. 10.6). При переходе NAD" в восстановленную форму (обозначается NADH рис. 15-6) от альдегидной группы глицеральдегид-З-фосфата в положение 4 ни-котинамидного кольца NAD" переносится ферментативным путем гидрид- [c.450]

    Шарипов Р., Мокроусова В. Об амперометрическом титровании циркония фосфатом по каталитическому току восстановления перекиси водорода.— В кн. Химия и химическая технология (Сб. статей аспирантов и соискателей), т. 3—4. Алма-Ата, 1965, 302—306. РЖХим, 1966, 18Г77. [c.53]


Смотреть страницы где упоминается термин Фосфаты восстановление водородом: [c.457]    [c.40]    [c.663]    [c.47]    [c.71]    [c.122]    [c.532]    [c.87]    [c.258]    [c.285]    [c.419]    [c.239]    [c.1273]    [c.262]    [c.13]   
Методы разложения в аналитической химии (1984) -- [ c.279 ]




ПОИСК







© 2024 chem21.info Реклама на сайте