Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористость мембран распределения пор по размера

    Из косвенных методов наиболее распространены методы вдавливания ртути, полупроницаемой мембраны, центрифугирования, смеси-мого вытеснения, капиллярной конденсации, продавливания жидкости и др. Одним из наиболее точных косвенных методов является ртутная по-рометрия [30, 63, 84]. Для однородных структур твердых тел сходимость отдельных точек кривой распределениях объемов пор по их размерам составляет 2% [2]. Метод ртутной порометрии основан на свойстве ртути не смачивать поверхность твердых тел, определяя объем вошедшей в поры образца ртути в зависимости от приложенного давления. Методом ртутной порометрии можно определить размеры пор от 0,01 до 100 мкм. Метод нашел широкое применение для исследования пористой структуры адсорбентов. К достоинству метода можно отнести и быстроту проведения исследований (опыт занимает 30-40 мин). [c.68]


    Композиционные мембраны составляют второй тип структур, часто используемых для обратного осмоса. В таких мембранах верхний рабочий слой и расположенная под ним подложка состоят из разных полимерных материалов, что позволяет оптимизировать каждый слой по отдельности. Первой стадией получения композиционной мембраны является приготовление пористой подложки. Важными характеристиками подложки являются ее поверхностная пористость и распределение пор по размерам. В качестве подложки часто используют ультрафильтрационные мембраны. Существуют различные методы нанесения тонкого плотного слоя поверх подложки  [c.302]

    Знание структуры полупроницаемых мембран имеет большое значение при решении задач разработки количественной теории мембранных процессов и их успешной реализации. Поскольку пористые мембраны наиболее перспективны для проведения процессов обратного осмоса и ультрафильтрации, то целесообразно подробнее рассмотреть основные методы определения пористости, размера и распределения пор для этого типа мембран. [c.91]

    НОСТИ принят постоянным для данной мембраны. Для разных мембран фо и а не совпадают. Отсюда можно сделать вывод о том, что обе константы определяются структурой мембраны (пористостью и распределением пор по размерам), а константа фо определяется также индивидуальными свойствами растворенного вещества. [c.182]

    В заключение отметим, что сканирующая электронная микроскопия является простым и информативным методом определения характеристик микрофильтрационных мембран. Можно разрешить структуру мембраны верхней и нижней поверхностей и поперечного сечения, а также оценить пористость и распределение пор по размерам. Необходимо соблюдать предосторожность, чтобы техника приготовления образца не искажала реальной пористой структуры. [c.173]

    В пористых мембранах наиболее важны такие структурные параметры, как размер пор, распределение пор по размерам, пористость и геометрия пор. Они должны учитываться в любой разрабатываемой модели. Селективность таких мембран основывается главным образом на различиях между размерами частицы и поры. Описание транспортных моделей будет включать обсуждение всех этих параметров. С другой стороны, в плотных, непористых мембранах молекула может проникать, только если она растворяется в мембране. Степень такой растворимости определяется сродством между полимером (мембраной) и низкомолекулярным компонентом. Далее, вследствие существования движущей силы компонент переносится от одной стороны мембраны к другой путем диффузии. Селективность в этих мембранах определяется в основном различиями растворимостей и/или коэффициентов диффузии. Следовательно, существенными для скорости транспорта параметрами являются такие, которые дают информацию о термодинамическом взаимодействии или сродстве между мембраной (полимером) и диффундирующим веществом. Взаимодействие между полимерами и газами обычно невелико, тогда как между полимерами и жидкостями часто существуют сильные взаимодействия. Когда сродство в системе увеличивается, полимерная сетка будет обнаруживать склонность к набуханию, и это набухание оказывает значительное влияние на транспорт. Такие эффекты должны рассматриваться при любом описании транспорта через плотные мембраны. [c.226]


    В лабораторной практике наиболее широкое распространение нашел метод полупроницаемой мембраны [15, 19, 76, 83], в котором распределение пор по размерам находят из соотношения капиллярное давление-насыщенность образца жидкостью. Метод отличается длительностью проведения опыта (порядка 20-25 сут) и ограничением измеряемых размеров пор исследуемого образца размерами пор полупроницаемой мембраны. При проведении исследований распределения пор по размерам методом полупроницаемой мембраны отмечается остающаяся на стенках поровых каналов пленка смачивающей жидкости [16, 30, 83], поэтому этот метод может быть использован для оценки влияния молекулярно-поверхностного взаимодействия насыщающей жидкости с материалом скелета пористой среды. [c.69]

    Металлические мембраны. Эти мембраны изготовляют выщелачиванием или возгонкой одного из компонентов сплава. Они отличаются высокой пористостью и очень узким распределением пор по размерам. Диаметр пор в таких мембранах 0,1-6 мкм, но в случае необходимости его можно уменьшить, используя при получении мембран тонкую металлическую фольгу. Металлические мембраны можно изготовлять также спеканием металлического порошка при высокой температуре. Диаметр пор у мембран, полученных таким способом, находится в пределах от нескольких микрометров до десятых и даже сотых долей микрометра. [c.319]

    У этих электродов жидкая мембрана представляет собой раствор (обычно это неполярный растворитель, не смешивающийся с водой) органического реагента, который принимает участие в ионном обмене с водной фазой или образует комплексы с ионами, присутствующими в водной среде. Этим раствором пропитывается слой подходящего пористого материала, например целлюлозы, ацетилцеллюлозы, поливинилхлорида и т. д. (толщина слоя составляет 100—200 мкм, а размеры пор 10—100 нм), который должен быть проницаемым для всех ионов [216, 218]. Селективность мембранного электрода зависит в первую очередь от свойств органического реагента [216], который образует ионные ассоциаты или иные комплексные соединения с ионами, проходящими в мембрану из водного раствора. Несколько меньший эффект наблюдается в случае растворителя, для которого в контакте с водной фазой устанавливается равновесное распределение по типу жидкость — жид- [c.388]

    Рассмотрим особенности процессов массопереноса в пористых и непористых мембранах. Существуют как неорганические пористые мембраны, так и полимерные пористые мембраны. Матрицы пористых мембран, применяемых ддя мембранного разделения газов, имеют средние радиусы пор в пределах от 1,5 нм до 200 нм. На ироцессы переноса кошюнептов газа в таких мембранах, оказывают влияние структурные характеристики пористой среды. К их числу относится пористость П, т. е. объемная доля пор, суммарная поверхность всех пор в единице объема пористого тела Sy, средний диаметр пор d. Больщое значение имеет также распределение пор по размерам и степень извилистости каналов. [c.418]

    Метод ртутной порометрии позволяет получить данные об общей пористости материала, а также дифференциальную и интегральную кривые распределения пор по размерам. К недостаткам метода следует отнести возможность деформации материала мембраны от применяемого высокого давления, а также фиксирование всех (в том числе и тупиковых) пор. Метод может быть использован только для исследования сухих мембран. Нижний предел разрешающей способности метода составляет 7,5—10,0 нм. [c.67]

    Весьма интересен для практического использования аппа-Т)ат, в котором для создания рабочего давления используется центробежное поле. Он представляет собой вертикальную центрифугу, обечайка ротора которой выполнена в виде полупроницаемой мембраны, зажатой между двумя слоями пористого материала. Последние служат для равномерного распределения потока по площади мембран и для придания обечайке необходимой прочности. Раствор через питающую трубу или через полый вал подается внутрь ротора. Скорость вращения ротора и.его размеры подбирают таким образом, чтобы центробежное давление на мембрану равнялось рабочему давлению. Пермеат собирается в неподвижный кожух аппарата, а концентрат выводят переливом через борт ротора. Диаметр переливного борта больще диаметра питающей трубы, поэтому раствор движется вдоль ротора самотеком. Центробежные аппараты отличаются высокими экономическими показателями. [c.58]

    Полимерные мембраны различаются по структуре и размерам пор, а также по концентрации и свободному объему последних. Наиболее распространенной является простая классификация, основанная на диаметре отверстий, в соответствии с которой различают плотные (микропористые) мембраны с диаметром пор порядка 3 нм, пористые (макропористые) мембраны с диаметром пор 5 нм — 1 мкм, крупнопористые (волокнистые) мембраны с диаметром пор 2 мкм и выше. Кроме того, существуют классификации, основанные на химической структуре материала, форме пор, степени кристалличности, заряжен-ности (или распределении электрического заряда) и т. д. [c.150]


    На рис. 2.1 в качестве примера показаны интегральная /(г) и дифференциальная fv(f) кривые распределения пор по эффективным радиусам г для тела с непрерывным спектром пор от Гт1п до Гтах И резко выраженным максимумом при г = 25 А. Такова модельная структура, характерная для пористых стекол. Рис. 2.2 дает представление о функции [(г) в трековых мембранах [8]. Интегральная кривая позволяет судить об изменении относительного объема пор (на единицу объема или массы пористой матрицы) дифференциальная кривая дает представление о количественном распределении пор определенного размера. Следует отметить, что структурные и дифференциальные кривые характеризуют не реальные полости матрицы мембраны, а их модельное представление в виде сфер, цилиндров и других геометрических форм. Методы получения функций распределения пор основаны на обработке изотерм сорбции в области капиллярной конденсации газа или на данных ртутной порометрни [1, 2]. [c.40]

    Часто приходится сталкиваться с путаницей при анализе результатов, полученных при испытаниях характеристик пористых мембран. Еще раз подчеркнем, что в данном случае речь идет о размерах пор, которые определяют, какие из присутствующих частиц пройдут через мембрану, а какие задержатся. Поэтому методы испытаний в сущности ограничены определением размера пор. Однако следует иметь в виду, что да ке если размер пор или распределение по размерам пор в мембране были определены вполне корректно, в реальном процессе разделения характеристики мембраны будут зависеть дополнительно совсем от других явлений, а именно от концентрационной поляризации и отложений на поверхности мембраны. [c.167]

    Сканирующая электронная микроскопия позволяет подробно разрешить структуру микрофильтрационных мембран верхнюю и нижнюю поверхности, а также поперечное сечение. Кроме того, легко наблюдаются любые признаки асимметрии структуры. Рис. 1У-5 показывает вид сверху (верхняя поверхность) пористой полиэфирамидной мембраны [2], разрешенный с помощью методов сканирующей электронной микроскопии. Микрофотографии такого типа позволяют оценить размер пор, распределение пор по размерам и поверхностную пористость, а также отчетливо визуализировать геометрию пор. [c.173]

    Другой разновидностью мембранных аппаратов является центробежная установка, состоящая из вертикальной центрифуги, обечайка ротора которой выполнена в виде полупроницаемой мембраны, зажатой между двумя слоями пористого материала. Последние служат для равномерного распределения потока по площади мембран и для придания обечайке необходимой прочности. Раствор подается внутрь ротора через питающую трубу или через полый вал. Скорость вращения ротора II его размеры подбираются так, чтобы на мембрану действовало необходимое давление. Фильтрат отводится со всей поверхности мембраны в неподвижный кожух аппарата, а концентрированный раствор — переливом через борт ротора. Диаметр переливного борта больше диаметра птающей трубы, поэтому раствор движется вдоль ротора самотеком. Отмечаются высокие экономические показатели работы установок с центробежными аппаратами. К недостаткам таких установок относятся более сложные устройство и монтаж разделительной ячейки. Но установка в целом значительно упрощается, так как в системе отсутствуют насосы высокого давления. Центробежные аппараты более перспективны для проведения ультрафильтрационных процессов, так как в этом случае вследствие меньших, чем при обратном осмосе, необходимых рабочих давлениях скорость вращения ротора аппарата сравнительно невелика. [c.166]

    Для оптимального подбора микрофильтрационных мембран достаточно быть уверенным, что структурные параметры соответствуют максим ьно большой (поверхностной) пористости и максимально узкому распределению пор по размерам. Таким образом достигается ситуация, когда конвективный поток, как и предсказывается этими уравнениями, зависит только от параметров мембраны и не содержит параметров, относящихся к растворенным веществам. [c.286]

    В этом выражении поток определяется двумя параметрами параметр В характеризует свойства мембраны, а параметр Ар — условия осуществления процесса. Коэффициент пропорциональности В зависит от таких свойств мембраны, как природа материала (степень гидро-фобности или гидрофильности), структура пор, пористость, которая должна быть по возможности высокой. Толщина мембраны также непосредственно влияет на величину потока чем тоньше мембрана, тем выше величина потока. Распределение пор по размерам в мембране должно быть достаточно узким, особенно это касается больших пор, поскольку они смачиваются в первую очередь. Параметр Ар, напротив, зависит только от разности температур АТ. [c.362]

    Хотя точная характеристика мембран и их стандартизация рассматриваются в гл. 4, здесь следует упомянуть некоторые характеристики мембран с целью облегчения понимания процесса фильтрации. Несмотря на то что фирмы-производители предпринимают усилия, для того чтобы поры в мембране имели небольшой разброс по размерам, в любой мембране размеры пор имеют некоторое распределение. Объем пустот (пор), или пористость, составляет ту часть объема мембраны, которая доступна фильтруемой жидкости. Хотя большая часть пор в мембране может быть открытой и взаимосвязанной, некоторые мембраны могут иметь закрытые поры, которые не соединя- [c.30]

    Мембранные методы позволяют реализовать широкий спектр процессов ргьзделения, причем для решения ргьзных задач требуются мембраны различного типа и с разнообразными структурами. Таким образом, мембраны могут существенно различаться по структуре и функциям. Известны многочисленные попытки связать структуру мембран с их транпортными характеристиками, тем самым достигаются более глубокое понимание процессов разделения и возможность предсказания типа структур, необходимых для осуществления данного процесса разделения. Одновременно требуется создать методы испытания мембран с тем, чтобы можно было определить, насколько данная мембрана подходит для осуществления тех или иных процессов разделения. Небольшие изменения в одном из факторов, определяющих условия формования мембран, могут изменить структуру рабочего слоя и таким образом существенно повлиять на показатели ее работы. Часто важнейшей проблемой является воспроизводимость. Создание методов исследования мембран необходимо, чтобы связать структурные характеристики мембран, такие, как размер пор или распределение пор по размерам, свободный объем и кристалличность, с транспортными и разделительными свойствами мембран. Хотя обычно производители мембран представляют весьма конкретные значения таких параметров пористых мембран, как размер пор, их распределение по размерам, отсечение, не делается попыток более широкого и сопоставительного использования этих данных. В связи с этим возникает вопрос, какие из данных, получаемых при испытаниях мембран, могут помочь при прогнозировании рабочих характеристик мембран в конкретном процессе. При этом крайне важно делать различие между характерными свойствами мембраны и особенностями ее конкретного применения. Например, потоки через ультрафильтрационные мембраны, применяемые в пищевой и молочной промышленности, обычно составляют менее 10% от потока чистой воды. При использовании микрофильтрационных мембран различия в потоках очищаемых сред и чистой воды могут быть еще большими. Подобные различия в основном вызваны явлениями концентрацион- [c.164]

    Ультрафильтрационные мембраны также могут рассматриваться как пористые мембраны. Однако их структура существенно более асимметрична по сравнению со структурой микрофильтрационных мембран. Ультрафильтрационные мембраны состоят из тонкого верхнего слоя, находящегося на пористой подложке, причем сопротивление массопереносу почти полностью определяется верхним слоем. По этой причине определение характеристик ультрафильтрационных мембран включает характеристику верхнего слоя, его толщины, распределения пор по размерам и поверхностной пористости. Для ультрафильтрационных мембран типичны поры диаметром от 20 до 1000А. В связи с малостью размеров пор для определения характеристик ультрафильтрационных мембран непригодны методы, используемые для исследования микрофильтрационных мембран. Так, разрешение обычного сканирующего микроскопа, как правило, недостаточно для надежного определения размеров пор верхнего слоя. По этой же причине нельзя использовать и методы точки пузырька и ртутной порометрии, поскольку малые размеры пор требуют приложения высоких давлений, которые могут вызвать разрушение мембраны. Но измерения проницаемости можно использовать, однако, с другими типами растворенных веществ. Ниже мы обсудим следующие методы определения характеристик ультраьфильтрационных мембран  [c.180]

    В газодиффузионных мембранах влияние матрицы на перенос массы определяется только характеристиками поровой структуры и, прежде всего функцией распределения пор. Свойства исходного материала не сказываются на кинетике процесса, хотя могут ограничивать область использования, рели спектр размеров пор достаточно широк, то в мембарне при заданных параметрах газовой смеси может одновременно реализоваться несколько режимов течения для каждого компонента. Если же учесть, что фильтрационный перенос и концентрационная диффузия не способствуют разделению смеси, то очевидно, что более целесообразны мембраны с монокапиллярной структурой типа пористого стекла Викор , в которых можно создать свободномолекулярный режим течения. Обсудим закономерности массопереноса при этом режиме. [c.54]

    Из этих таблиц видно, что динамические мембраны, полученные в результате самозадержания, могут обладать вполне удовлетворительными характеристиками. Причем не вызывает сомнения, что эти характеристики могут быть существенно лучше, если в качестве пористой основы использовать специально приготовленные подложки с более равномерным распределением пор по размеру. Весьма примечательно, что самозадерживающие динамические мембраны, хотя и с невысокой селективностью, образовались при работе на концентрированной серной кислоте, содержащей примеси арилсульфокислот. [c.86]

    В этой модели предполагалось, что все потоки проходят через поры, которые составляют определенную долю поверхности мембран и имеют характерное распределение по размерам. Скорость потока и селективная проницаемость мембраны определяются ее пористостью, распределением по размеру пор и специфическими взаимодействиями внутри пор, заполненных жидкостью. Эта модель отличается очевидной умозрительной привлекательностью, и она широко используется для описания процессов ультраЛильтрации и переноса через биологические мембраны. [c.133]

    Здесь коэффициент пропорциона п,ности В характеризует такие свойства мембраны, как природа материала, структура пор, пористость, распределение пор по размерам, толщина мембра . Разность парциальных давлений Др зависит только от разности температур по разные стороны от мембраны. В свою очередь, разность температур определяется гидродинамическими условиями осуществления процесса (т. е. скоростью жидкости с двух сторон от мембраны) и конструкцией модулей. От них будет зависеть так называемая температурная поляризация, которая приводит к уменьшению движущей силы процесса. При проведении процесса мембранной дистилляции вещество переносится через мембрану в виде пара. Тешюта, необходимая для парообразования, подводится к поверхности мембраны из объема жидкости. В результате температура будет понижаться по направлению к мембране. Разность температур жидкости вдали от поверхности мембраны и вблизи ее поверхности называется температурной поляризацией. Аналогичным образом со стороны бо.лее холодной жидкости температура будет понижаться в направлении от поверхности мембраны в сторону жидкости (рис. 15.6.4.2). Наличие гемнературной поляризации приводит к з меньщению перепада температур на мембране, т. е. уменьшает движущую силу процесса. [c.436]

    ФИВП мембраны — это обычно безбарьерные, изотропные, с узким распределением пор по размерам мембраны с промежуточной пористостью ( 50%), характеризующиеся хорошими или даже отличными механическими свойствами. При выборе мембранного и выщелачиваемого полимеров для ФИВП процессов следует руководствоваться правилами совместимости полимерных смесей, что, к сожалению, в настоящее время означает необходимость делать выбор в значительной степени эмпирически. [c.265]

    Установлено, что динамические мембраны с хорощими характеристиками получаются при обработке отходящих щелоков целлюлознобумажных производств. Была изучена возможность получения самозадерживающих мембран при работе на сточных водах химических и целлюлозно-бумажных производств. В качестве пористой основы использовали графитовые трубки наружным диаметром 8—12 мм и толщиной стенки 2 мм [38]. Следует отметить, что характеристики динамических мембран можно существенно улучшить, если в качестве пористой основы использовать специально приготовленные подложки с более равномерным распределением пор по размеру. Известно образование самозадерживающих динамических мембран невысокой селективности при работе на концентрированной серной кислоте, содержащей примеси арилсульфокислот. [c.30]

    В соответствии с данным определением микрофильтрационные мембраны являются пористыми объектами, содержащими макропоры, а ультрафильтрационные мембраны — также пористые объекты с мезопорами в верхнем слое. Таким образом, тип пористых мембран предполагает наличие макропор и мезопор. Для мембран этого типа характеризуют не материал мембраны как таковой, а лишь ее поры. В таком случае размеры пор или распределение пор по размерам будет определять, какие частицы или молекулы будут задерживаться мембраной, а какие проходить через нее. Характеристики же разделения мало зависят от природы ее материала. С другой стороны, плотные мембраны для газоразделения или первапорации не содержат фиксированных пор, и в этих случаях характеристики работы мембран определяются их материалом. Морфология, а точнее, физическое состояние полимерного материала мембраны (кристаллический или аморфный, стеклообразный или высокоэластический) непосредственно определяет ее проницаемость. Такие факторы, как температура или взаимодействие полимерного материала с растворителями, оказывают значительное влияние на сегментальную подвижность. Поэтому свойства матерала мембраны будут зависеть от температуры, состава разделяемой среды и т. д. В данной главе описаны и обсуждены методы определения характеристик мембран, как пористых, так и непористых. [c.167]

    Склонность к образованию осадков зависит от свойств мембраны. Так, забивание пористых мембран (микрофильтрационных, ультрафильтрационных) выражено значительно сильнее, чем для плотных или непористых мембран (первапорационных, обратноосмотических). Далее, узкое распределение по размерам пор может снизить тенденцию к забиванию, хотя этот фактор не следует переоценивать. Гидрофильные мембраны менее склонны забиваться, чем гидрофобные. В частности белки, как правило, сильнее адсорбируются на гидрофобных поверхностях, с которых их труднее удалить, чем с гидрофильных. Заряженные (особенно отрицательно) мембраны также менее склонны к забиванию, особенно в присутствии отрицательно заряженных коллоидных частиц в сырьевом растворе. [c.424]


Смотреть страницы где упоминается термин Пористость мембран распределения пор по размера: [c.279]    [c.26]    [c.78]    [c.70]    [c.285]    [c.45]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Мембраны размеры пор

Мембраны распределение размеров

Пористость мембраны



© 2025 chem21.info Реклама на сайте