Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение по молекулярным массам массовое

    Если раскрытие цикла осуществляется при каталитическом действии воды, т. е. происходит гидролитическая полимеризация, то при этом число образующихся активных центров, на которых происходит рост цепи, пропорционально первоначальной концентрации воды или катализатора. При присоединении мономера к активным центрам образуется полимер с очень узким молекулярно-массовым распределением. Для достижения такого распределения необходимо обрывать реакцию до получения полимера с высокой молекулярной массой, поскольку по мере протекания основной реакции создаются условия для реакций обмена между полимерными цепями, и распределение молекулярных масс приближается к наиболее вероятному. [c.70]


    Практический интерес представляет не столько числовое распределение молекулярных масс, сколько массовое, дающее массовую долю полимера той или иной степени полимеризации от об- [c.51]

Рис. 8. Массовое распределение молекулярных масс для разных значений глубины ноликонденсации р Рис. 8. Массовое распределение молекулярных масс для разных <a href="/info/679869">значений</a> глубины ноликонденсации р
    Молекулярная масса и молекулярно-массовое распределение. Эти характеристики — одни из важнейших при И. полимеров. Об экспериментальном определении средних значений мол. масс и функций распределения см. Молекулярно-массовое распределение. Молекулярная масса. [c.397]

    При анализе молекулярно-массового распределения пользуются кривыми в координатах функция массового или числового распределения— молекулярная масса. [c.210]

    Молекулярная масса и молекулярно-массовое распределение. Важнейшим молекулярным параметром, определяющим физические и технические свойства полимеров, в частности, их способность к высокоэластической деформации, является длина молекулярных цепей, которая обычно характеризуется степенью полимеризации Р, т. е. числом мономерных звеньев, входящих в цепь, или молекулярной массой М, равной М = Рт, где т — молекулярная масса мономерного звена. Величина молекулярной массы эластомеров обычно имеет порядок 10 —10 , хотя в последнее время для получения различных резиновых изделий все шире используются так называемые низкомолекулярные полимеры с М порядка 10 —Ю".  [c.21]

    Благодаря статистическому характеру разветвленности число узлов в макромолекуле (при данной величине р) пропорционально ее молекулярной массе. Поскольку возникновение в данной макромолекуле разветвлений влечет за собой ускорение ее роста (растет одновременно несколько концов) и, соответственно, увеличение вероятности дальнейшего разветвления, процесс разветвленности приводит к расширению молекулярно-массового распределения. При этом наиболее высокомолекулярные фракции содержат наибольшее число ветвей. [c.25]

    Молекулярно-массовое распределение каучука является в этом случае бимодальным (рис. 5). Частицы микрогеля, составляющие свыше 80% всего полимера по массе, имеют молекулярную массу (2—8)-10 и содержат 100—1000 узлов. Средневязкостная молекулярная масса золь-фракции составляет (1,5—5) 10 . [c.67]


    Улучшение физико-механических показателей резин, совершенствование их структуры связано с использованием регулярно-построенных полимеров, имеющих низкое значение Гс, состоящих из гибких макромолекул высокой молекулярной массы и имеющих узкое молекулярно-массовое распределение. При этом после вулканизации получаются совершенные сеточные структуры, которые характеризуются также узким распределением длин между узлами сетки и высокой подвижностью сегментов цепи. [c.92]

    Обрыв цепи. Обрыв полимерной цепи может происходить разными путями рекомбинацией, диспропорционированием, а также при взаимодействии с примесями или специальными добавками— регуляторами молекулярной массы и молекулярно-массового распределения полимера. [c.142]

    Высокомолекулярные соединения независимо от способа их получения характеризуются той или иной степенью полидисперсности по молекулярным массам. Общепринятым способом расчета молекулярно-массового распределения линейных поликонденсационных полимеров является статистический метод, предложенный Флори [20, 21], в основе которого лежит постулат о независимости реакционной способности макромолекул от их длины. [c.168]

    Приведенные выше данные свидетельствуют о непосредственной связи технических свойств полибутадиенов с их молекулярными параметрами микроструктурой, молекулярной массой, молекулярно-массовым распределением и разветвленностью полимерных цепей. Однако качество СК до настоящего времени оценивается большим числом показателей, характеризующих технологические и физико-механические свойства резиновых смесей и их вулканизатов. Оценка качества каучуков, и в частности бутадиеновых, по их молекулярным параметрам представляется более точной и объективной, но количественное определение молекулярной массы, ММР и разветвленности требует применения сложной (и дорогостоящей) физической аппаратуры, трудоемких методов и поэтому не нашло применения в промышленной практике. В последние годы был проведен цикл исследований, показавших, что достаточно [c.195]

    Наиболее важными молекулярными параметрами, которые определяют технологические свойства полимера, являются молекулярная масса, молекулярно-массовое распределение, степень разветвления и сшивания. СКИ с широким молекулярно-массовым распределением характеризуется лучшими технологическими свойствами по сравнению с аналогичными полимерами, отличающимися более узким ММР. [c.208]

    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]

    Возможность осуществлять обрыв и передачу полимерной цепи под влиянием специальных соединений широко используется в практике для целенаправленного регулирования молекулярной массы М и молекулярно-массового распределения. Применяемые для указанных целей соединения получили название регуляторов, [c.246]

    Свойства двойных сополимеров зависят от содержания в них звеньев этилена и пропил-ена, их распределения в молекулярной цепи, молекулярной массы, молекулярно-массового распределения, кристалличности и композиционной неоднородности, а тройных сополимеров — также и от природы третьего сомономера, содержания непредельных звеньев, равномерности их распределения и разветвленности молекулярной цепи. [c.311]

    Агрегатное состояние и свойства полиизобутилена определяются средней молекулярной массой и молекулярно-массовым распределением макромолекул. Вследствие этого известны жидкие низкомолекулярные полиизобутилены — П-1, П-10, П-20, оппанол [c.336]

    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]


    Заслуживают внимания данные рассмотрения зависимости молекулярно-массового распределения бифункционального преполимера различной полидисперсности и распределения цепей между узлами разветвления в реакциях образования трехмерных структур [49]. Весьма неожиданным оказалось влияние молекулярной массы в диапазоне (2,3 5,0) Ю" сегментированных эластомеров на температуру стеклования, сопротивление многократным деформациям, раздиру и гистерезис. Вероятно, причину аномального поведения этих систем следует искать в реструктурировании и упорядочений самих сегментов [50]. [c.539]

    Вязкость тиоколов, как и любых других олигомеров, определяется молекулярной массой полимера, его структурой, степенью разветвленности, молекулярно-массовым распределением [24]. Для линейных жидких тиоколов, полученных на основе ди(р-хлор-этил)формаля, была установлена линейная зависимость логарифма вязкости от среднемассовой молекулярной массы в степени 0,5, аналогичная ранее выведенной Флори для линейных сложных полиэфиров. Эта зависимость позволяет определить среднемассовую молекулярную массу линейных полимеров по вязкости (в Па-с), измеренной при 25°С по следующей формуле  [c.559]

    Молекулярно-массовое распределение поливинилпирролидона относительное содержание полимера, М — молекулярная масса)  [c.285]

    Влияние средней молекулярной массы на вязкость полимерных растворов. Молекулярная масса М — один из основных показателей полимера вязкость полимерных растворов т в значительной степени зависит от размеров молекул (табл. 28 (данные [23]) и рис. 47). Определенный разброс на графике т = [(1х) объясняется различием в показателе молекулярно-массового распределения для разных партий товарных полимеров. В целом существует довольно четкая корреляция между вязкостью и молекулярной массой. На этом основан один из методов определения молекулярной массы полимеров. Растворы полимеров с большей молекулярной массой обладают бо.тее высокими значениями вязкости. [c.111]

    Плотность гомополимера полиэтилена Филлипс варьируется от 0,965 для низкомолекулярного полимера с высоким индексом расплава до 0,960 для полимеров с индексом расплава 0,3—0,5. Полимеры сверхвысокой молекулярной массы обладают более низкой плотностью 0,94. Уменьшение плотности с ростом молекулярной массы обусловлено переплетениями цепей. Очень длинные молекулы переплетаются настолько, что затрудняют полную кристаллизацию. Полимеры с широким молекулярно-массовым распределением (ММР) имеют несколько более высокую плотность, чем полимеры с узким ММР, так как короткие молекулы могут ориентироваться относительно сегментов длинных молекул, облегчая кристаллизацию. [c.172]

    При рассмотрении распределения фракций п-меров по их массам в общей массе молекул, полученных в результате ступенчатого синтеза, нужно отметить следующее. Для линейной реакции с двумя функциональными группами Б каждом мономере или растущей молекуле зависимость распределения молекулярных масс от степени полимеризации (кривые ММР) выражается кривой на рис, 5.4. По мере увеличения глубины реакции кри- Рис. 5.4. Изменение молекулярно-мас-ВЫе молекулярно-массового рас- нового распределения в процессе сту- г пенчатого синтеза линеиного полиме- [c.75]

    Каучук представляет собой i/u -1,4-полиизопрен, содержащийся в латексе - водной эмульсии каучука, вырабатываемой гевеей Hevea brasi-liensis) и рядом других растений. Каучук - эластомер с широким молеку-лярно-массовым распределением (молекулярная масса от Ю до 410 ) это [c.515]

    С,Н40(СНа—СНО)2(СН2—СНаО)1,4Н получают кривые распределения молекулярных масс 200—750 с максимумами в области 350—400. Более точно кривую молекулярно-массового распределения рассчитывают при использовании предварительно определенных по индивидуальным компонентам калибровочных коэффициентов (поправок) для перевода сигнала детектора хроматографа от значения площади пика (в %) к значению массы (в %). Определенный, однако, для различных полипропиленгликолей в виде их триметилсилиловых эфиров с числом оксипропильных групп 4 или больше относительный калибровочный коэффициент, близкий по значению к единице [452], показывает, что для некоторых случаев метод расчета по площадям пиков не вносит большой ошибки. [c.216]

    Ранее мы утверждали, что любая из перечисленных ыще функций полностью описывает ММР полимера. Однако следует добавить, что точность описания кривой распределения при одинаковой точности задания функций различна для каждого интервала молекулярной массы. Так, числовые функции более точно оатисы вают ММР в области малых молекулярных масс, массовые функции, наоборот, более точны в области высоких М10лекулярных масс. [c.134]

    Важнейшей из характеристик полимерных сеток является число эластически активных цепей в единице объема полимера V. Эластически активной называют цепь линейного строения, заключенную между такими двумя соседними узлами сетки, от каждого из которых к поверхности образца исходят по меньшей мере три независимых ветви [7]. У вулканизованных каучуков обычно V = 10 — — 100 моль/м . V является функцией либо общего числа сшивок, молекулярной массы и молекулярно-массового распределения исходных макромолекул, если сетка образуется путем вулканизации, либо степени завершенности реакции и функциональности мономеров, если сетка формируется в процессе полифункциональной поликонденсации. [c.42]

    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]

    В настоящее время имеется уже достаточно материала для обсуждения этих вопросов. Исследования, проведенные во ВНИИСК [14, с. 33—71 15], позволили оценить влияние молекулярной массы и молекулярно-массового распределения каучука СКИ-3 на когезионную прочность его сажевых смесей. Было показано, что когезионная прочность невулканизованных сажевых смесей типа брекерной изменяется от 0,05—0,06 до 0,3 МПа при изменении вязкости по Муни каучука СКИ-3 от 40 до ПО. Аналогичную закономерность повышения когезионной прочности (до 0,5 МПа) с увеличением молекулярной массы наблюдали и у каучука СКИЛ (полиизопрен, полученный с литиевым катализатором) [16]. В то же время смеси на основе глубоко деструктирован-ного вальцеванием НК [вязкость по Муни (Б-1-4-100) меньше 40] обладают достаточно высокой когезионной прочностью — около 1,0 МПа. [c.226]

    На основе синтетического полиизопрена могут быть получены смеси с высокой когезионной прочностью только в случае применения полимера с чрезвычайно большой молекулярной массой (около 1,5-10 ) и узким молекулярно-массовым распределением, причем расширение MiMP даже при сохранении больших значений средней молекулярной массы приводит к падению когезионной прочности (рис. 1). [c.227]

    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]

    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Молекулярно-массовое распределение жидких тиоколов определяется реакциями межцепного обмена. Процесс получения жидких полимеров с концевыми 5Н-группами, осуществляемый химической деструкцией 5—5-связей и протекающий по статистическому закону, должен привести к равновесному распределению по молекулярным массам, а для линейных полимеров — к наиболее вероятному распределению Флори. Однако, в связи с тем, что этот процесс осуществляется на границе раздела фаз, распределение может быть случайным и равновесное распределение достигается лищь в результате реакций межцепного обмена, присущих этому классу полимеров [10, с. 477]. [c.560]

    Предварительное фракционирование по молекулярным массам дает большой эффект при последующем фракционировании на хроматографических колонках. Так, если смесь должна быть фракционирована в широком диапазоне молекулярно-массового распределения, то применение гель-хроматографии малоэффективно, так как раствор должен быть пропущен через ряд колонок, чтобы достичь нужной степени разделения индивидуальных компонентов. Но если исходную смесь предварительно разделить с помощью ультрафильтрации на несколько фракций, то дальнейшее фракционирование на хроматографических колонках не представляет труда. При этом разделение будет пр01ведено не только быстрее, но и качественней. Более того, ультрафильтрацией рас- [c.284]

    На рис. VI-3 показано молекулярно-массовое распределение исходного и фракционированного с помощью ультрафнльтрации поливинилпирролидона (использовались мембраны, задерживающие вещества с молекулярной массой от 50 000 и выше). Помимо того что данный процесс очень эффективен, использование ультрафильтрации в гель-хроматографии позволяет быстро оценить молекулярно-массовое распределение простым измерением вязкости или концентрации. [c.285]

    Молекулярно-массовое распределение неионогенных деэмульгаторов соответствует пуассоновскому. В состав этих деэмульгаторов входят соединения, молекулярные массы и растворимость в воде и нефти которых значительно различаются. При промьшке нефти водой в процессе обессоливания водорастворимая часть деэмульгатора переходит в воду, что приводит к изменению его состава и эффективности. Этот фштор следует учитывать при проведении обессоливания в две и более ступеней, так как нефть второй ступени будет содержать деэмульгатор, отличающийся от исходного. [c.134]

    Молекулярно-массовое распределение полимеров, полученных полимеризацией в растворе и суспензионной полимеризацией, обычно довольно широкое, но его можно при необходимости расширить илп сузить, модифицируя катализатор или изменяя условия процесса. Типичное отношение среднемассовой к среднечисленной молекулярной массе (М /Л4 ) изменяется от значений ниже 3 прн очень узком молекулярно-массовом распределении до более чем 20 для полимеров с широким ММР. Полимеры с узким ММР и иидексами расплава от 8 до 35 используют для литья под давлением благодаря их сопротивляемости деформациям и высокой ударной вязкости. Полимеры с [c.174]


Смотреть страницы где упоминается термин Распределение по молекулярным массам массовое: [c.173]    [c.144]    [c.550]    [c.550]    [c.206]    [c.213]   
Курс химической кинетики (1984) -- [ c.421 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние молекулярной массы и молекулярно-массового распределения полимеров

Зависимость вязкости от молекулярной массы для полимеров с узким молекулярно-массовым распределением

Массовая

Молекулярная масса

Молекулярная масса и молекулярно-массовое распределение

Молекулярная масса и молекулярно-массовое распределение натурального каучука

Молекулярная масса и молекулярно-массовое распределение полимера

Молекулярная масса массовое и числовое распределение

Молекулярная масса, молекулярно-массовое распределение и термоокислительное старение полимеров

Молекулярно-массовое распределение

Молекулярный вес (молекулярная масса))

Молекулярный вес распределение

Некоторые представления о молекулярной массе и молекулярно-массовом распределении

ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ

Определение среднего значения молекулярной массы и молекулярно-массовое распределение

Относительная молекулярная масса и молекулярно-массовое распределение продуктов полимеризации

Оценка молекулярной массы и молекулярно-массового распределения каучуков по их релаксационным характеристикам. А. И. Марей, Сидорович

Распределение по молекулярным массам



© 2025 chem21.info Реклама на сайте