Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ

    Методические рекомендации по применению методов определения молекулярных масс, молекулярно-массового распределения и обращенной газовой хроматографии в некоторых производствах полимеров/Под ред. [c.291]

    Из выражения (Y-78) видно, что относительная погрешность а в определении молекулярной массы на первом уровне интерпретации существенно зависит от дисперсии о и коэффициента определяющего угол наклона калибровочной зависимости (V.5). Чем меньше дисперсия и чем больше угол наклона, тем меньше погрешность определения молекулярных масс М, а следовательно, и молекулярно-массовых распределений полимеров. Таким образом, отношение может рассматриваться как харак- [c.218]


    С 1964 г. гель-проникающую хроматографию (ГПХ) стали щироко применять в химии и технологии полимеров как быстрый и надежный метод определения молекулярных масс и молекулярно-массовых распределений (ММР) пластмасс, смол, каучуков и т. п. В настоящее время этот метод практически полностью вытеснил ранее существовавшие трудоемкие методы фракционирования полимеров. В промышленности ГПХ используют для идентификации и анализа новых полимеров, а также для контроля за качеством продукции [1]. При помощи метода ГПХ можно не только быстро установить несоответствие полимера техническим требованиям, но даже иногда указать причину нарушения технологии, поскольку кривая молекулярномассового распределения непосредственно отражает условия получения полимера. Это относится как к процессам полимеризации и поликонденсации, так и к процессам приготовления полимерных композиций на основе заранее синтезированных компонентов [2]. В таких случаях нет необходимости иметь хроматограмму в виде истинной кривой распределения, поскольку прямое сопоставление графиков, полученных методом ГПХ в стандартных условиях, дает достаточную информацию о соответствии полимера техническим требованиям. Хроматограммы можно получать за 3—4 ч, причем очередной образец полимера можно вводить в колонку, не дожидаясь выхода предыдущего. Как метод разделения веществ по молекулярной массе ГПХ применяют для определения концентрации и типа низкомолекулярных добавок к полимеру, например органических растворителей, антиоксидантов, пластификаторов и пр. В настоящее время выпускают различные хроматографические материалы, предназначенные для разделения методом ГПХ низкомолекулярных веществ, а сам метод успешно используют для анализа смазочных материалов, полигликолей, асфальтенов и ряда других олигомерных соединений. [c.280]

    Гель-проникающая хроматография (ГПХ) стала широко принятым методом измерения размеров молекул полимеров. Принцип измерения основан на рассмотрении молекулы полимера как частицы определенного размера, а молекулярно-массовые распределения калибруются относительно стандарта — молекулярной массы полистирола, соответствующего данному объему. Метод широко используется для определения молекулярных масс через молекулярные объемы [41, 42]. Мы не предлагаем обсуждать этот подход, так как свернутая молекулярная цепь, составляющая частицу , не является частицей в контексте настоящей главы. Существует много отличных серийных приборов и много книг и статей по этому вопросу. Приборы для ГПХ дороги, и нет необходимости в применении этого метода для определения моле- [c.185]


    Вторая группа работ посвящена физике и физикохимии полимеров. В нее входят лабораторные работы по структуре полимеров, свойствам их растворов, определению молекулярной массы и молекулярно-массового распределения, деформации, механических и электрических свойств. При подборе этих работ сказалось, естественно, влияние специализации их составителей. Однако достоинством этого раздела является то, что все приводимые методики общедоступны и получаемые результаты легко воспроизводимы в обычной химической лаборатории. [c.7]

    Вискозиметрический метод определения молекулярных масс не является абсолютным для каждой системы полимер — растворитель следует проводить сопоставление результатов, полученных этим методом, с данными, найденными посредством абсолютных методов — осмометрией или светорассеянием, и применять при этом полимеры, которые имеют очень узкое либо достоверно установленное молекулярно-массовое распределение. Если для данной системы полимер — растворитель установлена зависимость между вязкостью и молекулярной массой, то вискозиметрия является самым простым и быстрым методом определения молекулярных масс. [c.172]

    Определенный разброс на графике l=f(M) можно объяснить различием в показателе молекулярно-массового распределения для разных партий товарных полимеров. В целом, существует довольно четкая корреляция между вязкостью и молекулярной массой. Заметим, что на этом основан один из методов определения молекулярной массы полимеров. [c.105]

    Детальное обсуждение достоинств различных методов, используемых для фракционирования полимеров, выходит за рамки данной книги. Большинство этих методов достаточно сложно и требует длительного времени, причем число получаемых при разделении фракций в значительной степени зависит от продолжительности фракционирования. Следует различать препаративное фракционирование, когда осу-щ,ествляется разделение полимера на фракции с последующим определением молекулярной массы каждой фракции, и аналитическое фракционирование, при котором определяется молекулярно-массовое распределение без выделения каждой отдельной фракции. В первой группе методов следует упомянуть новую быструю методику фракционирования с помощью гель-проникающей хроматографии. В этом методе разделения используется хроматографическая колонка, в которой в качестве стационарной фазы применяют пористый набухший полимер сетчатого строения. По мере прохождения полимерного раствора по колонке молекулы полимера диффундируют через гель в соответствии с их размерами. Молекулы небольшой длины глубоко проникают в гель, и, следовательно, для их прохождения через колонку тре- [c.239]

    Для определения молекулярной массы и молекулярно-массового распределения полимеров используют различные методы осмометрический, вискозиметрический, эбулиоскопический, методы светорассеяния и седиментации в ультрацентрифуге, хроматографическое фракционирование, гель-проникающую хроматографию, термодиффузию, турбидиметрическое титрование. [c.129]

    Большое влияние на свойства полимеров оказывает степень неоднородности полимеров по молекулярным массам (полидисперсность полимера). Полидисперсность полимеров определяют путем разделения на отдельные фракции с последуюш им определением их молекулярных масс [27, 38—40, 103]. По этим данным строят кривые молекулярно-массового распределения (ММР) полимера. [c.130]

    Определение среднего значения молекулярных масс (ММ) полимеров и молекулярно-массового распределения (ММР) с использованием вискозиметрии [c.101]

    Особенностью синтетических полимеров является то, что молекулярные массы отдельных цепей могут существенно отличаться от средней молекулярной массы полимера. Реальный полимер представляет собой смесь макромолекул с различной молекулярной массой. Это приводит к тому, что каждый полимер характеризуется своим молекулярно-массовым распределением. Эта особенность синтетических полимеров отличает их от биополимеров, которые, как правило, имеют строго определенную молекулярную массу. [c.10]

    Как уже отмечалось в главе 4, определение молекулярной массы абсолютными или относительными методами или даже нахождение отношения Му,/Мп во многих случаях недостаточны для полной молекулярной характеристики полимеров. Для понимания механизма образования и химических превращений полимеров, а также для выявления зависимости свойств полимеров от их молекулярных характеристик необходимо иметь точную картину молекулярной неоднородности полимера, т. е. определить кривую молекулярно-массового распределения (ММР). Для анализа кинетики химических реакций достаточно получить картину ММР аналитическими методами (седиментация, гель-проникающая хроматография, турбидиметрия). В случае решения задачи о влиянии молекулярной массы на свойства полимеров удобно провести препаративное фракционирование, т. е. разделить полимер на множество узких фракций, для которых определяются свойства, структура и ММР. [c.205]


    Разумеется, большие усилия затрачиваются и на достижения соответствия между экспериментом и теорией. Возьмем в качестве примера молекулярно-массовое распределение. В настоящее время уже созданы теории, в которых влияние этого фактора учитывается путем введения различным образом усредненных молекулярных масс, а экспериментальные исследования, в свою очередь, проводятся на монодисперсных образцах. Далее, совершенно аналогично тому, как второй вириальный коэффициент вводится для описания отклонения свойств реальных газов от идеальности, эффект исключенного объема представляет собой параметр, связанный со вторым вириаль-ным коэффициентом разбавленных растворов полимеров, который может быть определен путем измерения осмотического давления раствора и т. п.. [c.66]

    Определение физич. и физик о-х и-мич. характеристик. Об определении молекулярных масс, размера и формы макромолекул и молекулярно-массового распределения см. Молекулярная масса и Молекулярно-массовое распределение. О возможностях применения физич. методов для исследования полимеров см. Идентификация. [c.68]

    Реализация при определенной темп-ре физич. состояния полимера с присущим ему комплексом М. с., изменение состояния с изменением темп-ры и особенности механич. поведения в определенном состоянии определяются, в первую очередь, химич. строением и свойствами составляющих полимер макромолекул характером расположения мономерных групп (линейным, с разветвлениями или в виде пространственной сетки), гибкостью полимерной цепи, степенью регулярности ее строения, конкретным строением мономерного звена, от к-рого зависит межмолекулярное взаимодействие, а также мол. массой и молекулярно-массовым распределением. [c.117]

    Э. п. проводят в различных режимах по току. При подаче постоянного напряжения вследствие образования полимерной пленки ток, и соответственно плотность тока, уменьшаются во времени. Путем изменения внешнего напряжения можно регулировать плотность тока и, следовательно, скорость генерирования активных частиц, поддерживая их концентрацию постоянной или меняя ее по определенному закону. Это позволяет регулировать как мол. массу полимеров, так и молекулярно-массовое распределение. [c.478]

    ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ [c.172]

    Определение молекулярной массы (ММ) и молекулярно-массового распределения (ММР) полимеров является специфическим разделом в физико-химическом анализе веществ. Используемые для этого методы существенным образом отличаются от методов аналитической химии. Действительно, такие методы анализа веществ, как спектральные (ЯМР, ИКС, УФС), теплофизические (ДТА, ДТГ, ДСК), газовая хроматография, пиролиз и другие широко используются в анализе металлов, неорганических и органических низкомолекулярных веществ. Применение их к полимерам связано с перекалибровкой прибора. В литературе довольно подробно описаны теоретические основы методов, приборы фактически являются однотипными для низ-ко- и высокомолекулярных веществ. [c.172]

    Транспортные методы являются, конечно же, не единственными методами определения молекулярных масс и полидисперсности. Хорошо известны такие абсолютные методы определения М как светорассеяние растворами полимеров, осмометрия, криоскопия, эбулиоскопия и т. п., а также исследование молекулярномассового распределения (ММР) с помощью фракционирования, электронной микроскопии и т. д. Тем не менее именно транспортные методы получили в настоящее время чрезвычайно широкое распространение, и их совокупность составляет аналитическую основу современной физической химии полимеров как методов исследования молекулярно-массовой, композиционной, структурной и других типов неоднородностей макромолекул [12—16]. [c.7]

    Молекулярную массу полифениленоксида [37] вычисляют по характеристической вязкости [г]], которую определяют вискозиметрически в растворе бензола при 25 °С, по формуле Марка— Хувинка (см. гл. 1, разд. Определение физических свойств полимеров. Определение молекулярной массы и молекулярно-массового распределения ). [c.142]

    Каково молекулярно-массовое распределение полимера, если значения молекулярных масс, определенных осмометрически, вискозиметрически и методом светорассеяния, для него совпадают  [c.74]

    В работе [249] разработан метод скоростной нефелометрии для определения молекулярно-массового распределения полиэтилена. Этот метод, как и разделение в температурном градиенте, основан на зависимости растворимости полимера от температуры. Раствор очень небольшого количества полимера в смеси растворителя (а-хлорнафталин) и иерастворителя медленно охлаждают. Молекулы с высокой молекулярной. массой становятся нерастворимыми, вызывая небольшое помутнение. При дальнейшем снижении температуры количество осажденного полимера растет в соответствии с его молекулярной массой. Наконец, достигается температура, при которой даже фракции с самой низкой молекулярной массой становятся нерастворимыми. При этой температуре мутность максимальна, и в идеальном случае весь растворенный полимер становится нерастворимым, но остается в объеме в виде тонкой суспензии. Если построить график зависимости возрастания мутности раствора с понижением температуры, то получится кривая, сходная с кривой зависи.мости массы фракции в процентах от ее молекулярной массы. Рост мутности соответствует общей массе фракции в процентах, а молекулярная масса соответствует снижению температуры. [c.78]

    Молекулярную массу и молекулярно-массовое распределение можно измерить методом гель-пропикающей хроматографии путем сравнения со стандартом. Однако благодаря влиянию молекулярной массы на физические свойства полимера используют ряд других более быстрых методов приближенного определения величины молекулярной массы. Часто определяют вязкость раствора полимера в тетралине при нескольких концентрациях полимера. Среднемолекулярную массу Лiw можно затем соотнести с характеристической вязкостью. При значениях до 650 000 можно пользоваться соотношением [9] [c.198]

    Определение молекулярной массы и молекулярно-массовог распределения. Макромолекулы в полимере имеют различную молекулярную массу, поэтому в отличие от низкомолекулярных соединений молекулярная масса полимера в целом — среднестатистическая величина, зависящая от молекулярно-массового распределения, которое показывает соотношение макромолекул различной и ссы в данном образц полимера. Различают среднечисленную Мп и среднемассовую Мш молекулярные массы  [c.223]

    Впервые прибор для гель-хроматографического анализа полимеров выпущен фирмой Waters в 1964 году, спустя пять лет после открытия метода. Сегодня жидкостные хроматографы для анализа молекулярно-массового распределения (ММР) полимеров выпускаются во всех промышленно развитых странах, в России известны хроматографы серии ХЖ. К числу последних модификаций зарубежных приборов относится гель-хроматограф фирмы Waters hem. Div. с вискозиметром для определения молекулярной массы, ММР, а также степени ориентации макромолекул. Карусельная конструкция прибора позволяет одновременно испытывать 16 образцов. [c.109]

    После определения молекулярных масс отдельных фракций по-лидисперсного полимера молекулярно-массовое распределение удобно представить графически в виде кривой распределения по массам [c.84]

    В данной главе приведены методы измерений физико-химических и физических характеристик полимеров, которые дают надежную и однозначную информацию при относительно небольшой сложности и длительности экспер1имента электрохимические, спектрофотометрические, ИК-спектроскопия, ЯМР, масс-спектроскопия, термогравиметрический анализ, дифференциальный термический анализ, хроматографические методы, методы определения молекулярной массы и молекулярно-массового распределения. Эти методы и применяемая аппаратура подробно описаны в специальных руководствах здесь приводится только принцип методов и рассматривается возможность их использования для анализа полимеров. [c.11]

    Морозов А. Г., Караньяя О. М., Павлов А. В. — В кн. Методические рекомендации по применению методов определения молекулярных масс и молекулярно-массового распределения и обращенной газовой хроматографии в некоторых производствах полимеров/Под ред. А. И. Малышева. Черкассы, НИИТЭХИМ, 1982, с. 7—9. [c.294]

    Полимеры, в отличие от низкомолекулярных веществ, ие имеют определенного зиачеиия молекулярной массы, поскольку их макромолекулы имеют различную длину. Для характеристики молекулярной массы полимеров используют среднее ее значение. Усреднение проводят по количеству (числу) молекул с определенной массой (среднечисловая молекулярная масса) или по массовой доле молекул с определенной массой (средиемассовая молекулярная масса). Та нлн иная величина получается в зависимости от способа определения. Осмометрическим, эбулиоскопиче-ским, криоскопическим и химическим методами находят средне-числовую молекулярную массу, а методом светорассеяния — средиемассовую молекулярную массу. Наиболее точной характеристикой молекулярной массы служат дифференциальные кривые молекулярно-массового распределения, представляющие собой пики, ширина которых свидетельствует о полидисперсности полимера. [c.182]

    МОЛЕКУЛЯРНАЯ МАССА ПОЛИМЕРОВ. Большинство синт. полимеров состоит из макромолекул разл. мол. массы. Поэтому М. м. п., в отличие от низкомол. соед.,— средне-статистич. величина, зависящая от молекулярно-массового распределения и спо а)ба усреднения. Наио. распространенные эксперим. методы определения М. м. п. приводят к следующим ее оса. значениям среднечисленной М среднемассовой Mw, Z-средней Мг и средневязкостной Мп- Если полимер состоит иэ набора N фракций и численная доля фракции с мол. массой М( равна vi, соответствующие эначе- [c.347]

    В книге изложены основные положения фияико-химии разбавленных растворов высоко- и низкомолекулярных полимеров статистика, гидродинамика, термодинамика цепных молекул. Описаны методы определения молекулярных масс (среднечисловоп, средномассовый и др.), а также методы определения молекулярпо-массового распределения. [c.2]

    Основные научные работы посвящены исследованию полимеров. Разработал методы получения полимеров с высокими диэлектрическими и механическими свойствами. Открыл высокомолекулярные соединения, состоящие из глобулярных макромолекул (микрогелей). Развил ряд методов исследования полимеров, в частности метод светорассеяния для определения молекулярной массы. Показал, что, контролируя молекулярно-массовое распределение полимеров, степень их кристалличности, можно получить микрокристаллические материалы (например, полиэтилен), способные заменять в качестве электроизоляции свинец в производстве кабелей и др. Разработал абляционностойкие полимерные материалы для защиты ракет и космических кораблей. [c.43]

    Теория сополиконденсации. Помимо характерного также и для гомополиконденсации расчета мол. массы полимера и его молекулярно-массового распределения, перед теорией С. стоят еще след, задачи 1) вычисление среднего состава сополимера, т. е. мольной доли элементарных звеньев каждого типа 2) расчет композиционной неоднородности сополимера, описываемой рас-цределением отдельных макромолекул по их составу 3) исследование влияния активностей и соотношения мономеров на порядок распределения звеньев в сополимере. Эти задачи решаются как статистическим, так и кинетич. методом. Первый из них заключается в вычислении вероятностей образования структур определенного вида, а второй предполагает расчет концентраций индивидуальных продуктов путем интегрирования кинетич. ур-ний процесса. [c.220]

    Значительные успехи в описании свойств цепных молекул достигнуты в 1940—50-х гг. Появившиеся в те годы работы были посвящены исследованию разбавленных растворов полимеров, в которых молекулы удалены друг от друга, и следовательно, поведение их более или менее независимо [284 95, гл. 3]. Особое внимание было уделено определению молекулярных масс и молекулярно-массового распределения методами осмометрии, светорассеяния и реже — ультрацентрифугирования. Методом светорассеяния были оценены характеристические размеры полимерных молекул, определяемые как расстояние г между концами цепи (рис. 1.1). В соответствии со статистикой, величина г должна быть усреднена по всем имеющимся молекулярным массам и обычно выражается как среднеквадратичное расстояние между концами цепи. Кроме того, были получены важные для практических целей соотношения, связывающие молекулярную массу и характеристическую вязкость [т]]. Позднее, с введением в практику метода гель-проникающей хроматографии (ГПХ) задача определения молекулярных масс и характера их распределения еще более упростилась [105]. Основные выводы перечисленных работ будут обсуждены ниже, поскольку поведение тверд ях., полнм рйВ<, щл и [c.17]

    Молекулярно-массовое распределение исследовано методом гель-проникающей хроматографии [570, 571]. Для полимера из дихлордифенилсульфона и дифенилолпроиана получены следующие уравнения для вискозиметрического определения молекулярной массы  [c.257]


Смотреть страницы где упоминается термин ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ: [c.123]    [c.242]    [c.347]    [c.519]    [c.144]    [c.183]    [c.519]    [c.150]    [c.15]    [c.194]    [c.156]    [c.132]   
Смотреть главы в:

Анализ полимеризационных пластмасс -> ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ




ПОИСК





Смотрите так же термины и статьи:

Масса определение

Массовая

Молекулярная масса

Молекулярная масса определение

Молекулярная масса полимеров

Молекулярно-массовое распределение

Молекулярный вес (молекулярная масса))

Молекулярный вес распределение

Молекулярный вес, определение

Определение молекулярно-массового распределения полимеров

Полимеры массы

Полимеры определение

Полимеры определение молекулярной

Полимеры распределения

Распределение по молекулярным массам

Распределение по молекулярным массам массовое



© 2025 chem21.info Реклама на сайте