Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние молекулярной массы и молекулярно-массового распределения полимеров

    Большое влияние на свойства полимеров оказывает степень неоднородности полимеров по молекулярным массам (полидисперсность полимера). Полидисперсность полимеров определяют путем разделения на отдельные фракции с последуюш им определением их молекулярных масс [27, 38—40, 103]. По этим данным строят кривые молекулярно-массового распределения (ММР) полимера. [c.130]


    Влияние средней молекулярной массы на вязкость полимерных растворов. Молекулярная масса М — один из основных показателей полимера вязкость полимерных растворов т в значительной степени зависит от размеров молекул (табл. 28 (данные [23]) и рис. 47). Определенный разброс на графике т = [(1х) объясняется различием в показателе молекулярно-массового распределения для разных партий товарных полимеров. В целом существует довольно четкая корреляция между вязкостью и молекулярной массой. На этом основан один из методов определения молекулярной массы полимеров. Растворы полимеров с большей молекулярной массой обладают бо.тее высокими значениями вязкости. [c.111]

    Прочность полимерного материала, как и все другие свойства, определяется следующими параметрами структуры полимера [4, с. 56—128 295—306] молекулярной массой молекулярно-массовым распределением степенью разветвленности или сшивания макромолекул типом химических связей в макромолекулах степенью и направлением ориентации типом надмолекулярной организации степенью кристалличности и т. д. [4, с. 34—38]. В гл. 1 рассмотрено влияние пластификаторов, наполнителей, отвердителей и стабилизаторов на прочность полимерных композиций. В этом разделе мы рассмотрим влияние-на прочность структурных параметров материала. [c.61]

    Акты инициирования и роста цепи характерны для всех полимеризационных процессов. При этом рост цепи является основной реакцией, ответственной за формирование макромолекулы, и определяет строение образующегося полимера, а в случае сополимеризации и его состав. Инициирование определяет природу активных центров и, следовательно, механизм процесса в целом. В нек-рых реальных системах суммарный процесс состоит только из этих двух стадий (см. Живущие полимеры). Акты обрыва и передачи цепи оказывают влияние на размер макромолекул образующегося полимера, т. е. его молекулярную массу, молекулярно-массовое распределение, а также (при передаче цепи на полимер) на форму макромолекул (образование разветвленных макромолекул, трехмерных структур и др.). [c.479]

    Характеристиками макроструктуры полимеров, оказывающей существенное влияние на их поведение при переработке, являются средняя молекулярная масса, молекулярно-массовое распределение (ММР), степень разветвленности макромолекул и содержание геля. [c.321]


    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]

    Изучение влияния молекулярной массы на вязкостные свойства полимеров подразумевает ответ на ряд вопросов. Как она влияет на начальную вязкость и аномалию вязкости полимеров Как сопоставлять вязкостные свойства полимеров с различной структурой макромолекулярной цепи, учитывая, что при одном и том же значении молекулярной массы длина цепи и ее гибкость могут сильно различаться для полимеров разной природы Как сказывается молекулярно-массовое распределение на зависимости начальной вязкости от молекулярной массы и как изменяется при этом аномалия вязкости При оценке влияния ММР на вязкостные свойства полимеров, в свою очередь, возникает важнейший вопрос о том, какой характеристикой ММР и какими значениями молекулярных масс полидис-персных полимеров следует пользоваться для сравнения вязкостных свойств различных полимеров. Ответ на эти вопросы, хотя бы частичный, в настоящее время может быть дан применительно только к линейным полимерам. [c.180]

    При оценке влияния молекулярной массы на электрическую прочность полимеров необходимо учитывать также возможность структурных изменений образцов при изменении молекулярной массы [176]. Так, у образцов полиэтилена с узким молекулярно-массовым распределением при увеличении средних значений молекулярной массы от 3000 до 600 ООО электрическая прочность повышалась от 1,7-10 до 5,0-10 В/м, вероятно, вследствие уменьшения размеров сферолитов от 70 до 5—10 мкм. [c.110]

    Разумеется, большие усилия затрачиваются и на достижения соответствия между экспериментом и теорией. Возьмем в качестве примера молекулярно-массовое распределение. В настоящее время уже созданы теории, в которых влияние этого фактора учитывается путем введения различным образом усредненных молекулярных масс, а экспериментальные исследования, в свою очередь, проводятся на монодисперсных образцах. Далее, совершенно аналогично тому, как второй вириальный коэффициент вводится для описания отклонения свойств реальных газов от идеальности, эффект исключенного объема представляет собой параметр, связанный со вторым вириаль-ным коэффициентом разбавленных растворов полимеров, который может быть определен путем измерения осмотического давления раствора и т. п.. [c.66]

    Вначале имеет смысл рассмотреть вопрос о том, каким образом конфигурация (т. е. первичная структура) полимерной цепочки может оказывать влияние на процесс кристаллизации. Наиболее важной характеристикой первичной структуры макромолекулы является, по-видимому, молекулярная масса, а также ширина молеку-лярно-массового распределения полимера. Как всегда, начнем анализ с простого случая. В этом смысле благоприятным объектом является полиэтилен (или полиметилен), который обладает наиболее простым молекулярным строением и который, кроме того, привлек внимание большого числа исследователей после первых опытов по получению полимерных монокристаллов. К сожалению, серьезным недостатком полиэтилена является то обстоятельство, что блочные образцы обладают чрезвычайно широким распределением по молекулярным массам. На это обращал неоднократно внимание автор при обсуждении зависимости равновесной температуры плавления от молекулярной массы [1], возможности фракционирования при кристаллизации [2—6] и т. д. Ниже будет обсуждаться проблема образования кристаллов с выпрямленными цепями в случае полимеров низкой молекулярной массы с использованием результатов, полученных в указанных работах. [c.199]

    Существенное влияние на скорость К. полимеров оказывают также мол. масса и молекулярно-массовое распределение. Исследования показывают, что при постоянной темн-ре скорость К. обычно снижается с уменьшением мол. массы. При этом, однако, следует [c.589]

    Интересными являются результаты исследований влияния молекулярной массы и молекулярно-массового распределения полиизобутилена на кинетику его термодеструкции. Для исследования были взяты несколько высоко- и низкомолекулярных фракций и нефракционированных образцов полиизобутилена с высокими и низкими значениями молекулярной массы. Обнаружено, что молекулярная масса полиизобутилена резко снижается от % 2 млн до 25 000 в начальный период (10% потери массы) деструкции полимера в вакууме при 573 К. После этого снижение молекулярной массы полимера существенно замедляется. [c.17]


    В целом влияние молекулярной массы и молекулярно-массового распределения на свойства фторкаучуков и резин на их основе аналогично влиянию этих параметров молекулярной структуры на макроскопические свойства других полимеров. [c.39]

    Как уже отмечалось в главе 4, определение молекулярной массы абсолютными или относительными методами или даже нахождение отношения Му,/Мп во многих случаях недостаточны для полной молекулярной характеристики полимеров. Для понимания механизма образования и химических превращений полимеров, а также для выявления зависимости свойств полимеров от их молекулярных характеристик необходимо иметь точную картину молекулярной неоднородности полимера, т. е. определить кривую молекулярно-массового распределения (ММР). Для анализа кинетики химических реакций достаточно получить картину ММР аналитическими методами (седиментация, гель-проникающая хроматография, турбидиметрия). В случае решения задачи о влиянии молекулярной массы на свойства полимеров удобно провести препаративное фракционирование, т. е. разделить полимер на множество узких фракций, для которых определяются свойства, структура и ММР. [c.205]

    Строение основной цепи олигоэфира оказывает влияние на температуру размягчения полиэфиров и другие свойства сетчатых полимеров. Однако вследствие статистического распределения функциональных групп в цепи и широкого. молекулярно-массового распределения эти закономерности изучены лишь в самом общем виде [1-7]. Установлено, что температура раз.мягчения полиэфиров повышается по мере увеличения молекулярной массы, асимптотически приближаясь к некоторой предельной величине. Одновременно возрастают теплостойкость, твердость. прочность при растяжении и изгибе. С увеличением температуры размягчения линейных полиэфиров возрастает и жесткость сетчатых полимеров. [c.115]

    ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ И МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРОВ [c.109]

    Вторая группа работ посвящена физике и физикохимии полимеров. В нее входят лабораторные работы по структуре полимеров, свойствам их растворов, определению молекулярной массы и молекулярно-массового распределения, деформации, механических и электрических свойств. При подборе этих работ сказалось, естественно, влияние специализации их составителей. Однако достоинством этого раздела является то, что все приводимые методики общедоступны и получаемые результаты легко воспроизводимы в обычной химической лаборатории. [c.7]

    Влияние молекулярно-массового распределения на нормальные напряжения. Вопрос о влиянии молекулярно-массового распределения на нормальные напряжения, развивающиеся при установившемся сдвиговом течении полимерных систем, как и в случае вязкости, сводится к выбору такой усредненной молекулярной массы М, для которой зависимость Щ должна совпадать с зависимостью 0 М), измеренной для монодисперсных полимеров. Известно очень мало экспериментальных данных относительно влияния молекулярно-массового распределения на нормальные напряжения. Поэтому какие-либо окончательные выводы делать здесь было бы преждевременным. Однако существующие экспериментальные данные Згказывают на более сильное, чем в отношении вязкости, влияние высших моментов молекулярно-массового распределения на величину 5о. Во всяком случае использование в качестве аргумента зависимости среднемассовой молекулярной массы, с помощью которой удачно описываются экспериментальные данные по вязкостным свойствам полимеров с произвольными молекулярно-массовыми распределениями, оказывается для нормальных напряжений неудовлетворительным. Так, для полидиметилсилоксанов с различными молекулярно-массовыми распределениями начальный коэффициент нормальных напряжений оказывается однозначной функцией произведения двух средних молекулярных масс — среднемассовой, и 2-средней (рис. 4.23). Но неизвестно, будет ли этот аргумент пригоден для [c.365]

    Влияние мол. массы, молекулярно-массового распределения и особенностей микростроепия пoJ(шмepныx цепей на высокоэлаетичность полимеров изучено крайне слабо, хотя можно утверждать, что при сопоставимых условиях высокоэластич. деформации увеличиваются по мере повышения мол. массы. Обычно полагают, что способность полимера к высокоэластич. деформациям определяется шириной илн высшими моментами моле-кулярно-массового распределения. [c.290]

    Молекулярную массу и молекулярно-массовое распределение можно измерить методом гель-пропикающей хроматографии путем сравнения со стандартом. Однако благодаря влиянию молекулярной массы на физические свойства полимера используют ряд других более быстрых методов приближенного определения величины молекулярной массы. Часто определяют вязкость раствора полимера в тетралине при нескольких концентрациях полимера. Среднемолекулярную массу Лiw можно затем соотнести с характеристической вязкостью. При значениях до 650 000 можно пользоваться соотношением [9] [c.198]

    Изменение свойств материала вызывается разнообразными причинами. Физические воздействия (приводящие к рекристаллизации, пластификации, деформации) изменяют надмолекулярную структуру и релаксационные свойства материала. Химические воздействия (приводящие к гидролизу, окислению, механодеструкции, радиолизу, озонолизу, фотолизу и т. д.) изменяют молекулярную массу, молекулярно-массовое распределение и химический состав полимера. Кроме того, материал может подвергаться оиологическому старению и разрушению под влиянием ферментов, микроорганизмов, грибков и т. д. [c.328]

    Влияние температуры. На основании исследований зависимости структуры полихлоропренов от температуры полимери- зации путем определения молекулярно-массового распределения полимеров и содержания кристаллической и аморфной фаз было установлено, что с повышением температуры полимеризации снижается регулярность структуры полимеров и уменьшается их молекулярная масса. При этом отмечается также уменьшение скорости кристгллизации. [c.241]

    В [178] приведены данные по молекулярно-массовому распределению полимера, найденному гель-проникающей хроматографией в тетрагидрофуране. Полисульфонаты стабильны на воздухе и в инертной атмосфере до 350 °С (рис. 5.60). Ароматические группы различного строения не оказывают значительного влияния на термостойкость верхняя граница определяется стабильностью сульфонатной связи,- расплав полимера быстро разлагается при 400 °С с количественным выделением Ог. При дальнейшем повышении температуры (выше 500 °С) разложение замедляется, потеря массы при 900°С составляет 50% [178]. Ароматические полисульфонаты имеют отличную гидролитическую стойкость. Молекулярная масса не меняется после 24 ч выдержки в 10 %-ной серной кислоте и 10 %-ном гидроксиде натрия. При 80—85 °С в аналогичных условиях молекулярная масса даже несколько возрастает [177]. [c.355]

    Впервые систематизируются научные исследования в области макроскопической модели протекания быстрых процессов олиго- и полимеризации изобутилена. Обсуждаются диффузионная, гидродинамическая и зонная модели. Рассмотрено математическое моделирование процесса полимеризации изобутилена как быстрой химической реакции. Раскрыты основные принципиально новые, в большей мере не имеющие аналогов, закономерности процесса и выявлены три макроскопических типа протекания реакции, прежде всего факельного и квазиидеального вытеснения в турбулентных потоках ( плоский фронт реакции). Рассмотрен нетрадиционный подход к оценке кинетических констант реакции полимеризации изобутилена Кр и К . Детально проанализированы методы регулирования основных молекулярно-массовых характеристик полиизобутилена благодаря изменениям различных факторов в первую очередь не имеющих аналогов в режиме квазиидеального вытеснения в турбулентных потоках, где выявлен ряд критических параметров. Рассмотрено влияние теплосъема как внешнего, так и внутреннего (за счет кипения мономера и/или растворителя). Детальный анализ теплового режима реакции полимеризации изобутилена и его влияния на молекулярную массу и молекулярно-массовое распределение полимера позволили предложить новый метод оценки молекулярно-массовых характеристик с использованием зонной модели. На базе этой модели разработаны принципы регулирования молекулярных масс и молекулярно-массового распределения полиизобутилена в зависимости от числа зон подачи катализатора и его количества, подаваемого в каждую зону. [c.378]

    Если при этом процесс щюводится в аппаратах трубчатого типа,то изменение вязкости смеси приводит к изменению профиля скоростей реакционной массы,что усложняет учет влияния распределения времени пребывания реагентов в аппарате на молекулярно-массовое распределение синтезируемого полимера. [c.275]

    Отличительной особенностью полимеров, как известпо, является их молекулярная неоднородность, т. е. наличие молекулярно-массового распределения, и в этом смысле даже чистый гомополимер представляет собой многокомпонентную систему. Если предположить, что кристаллизация протекает по внутримолекулярному механизму, то зависимость ее скорости от молекулярной массы должна, очевидно, оказывать сильное влияние на процесс образования [c.261]

    Характер зависимости У(. от мол. массы полимера определяется влиянием этой последней на вязкость Тс от мол. массы практически не зависит. Более сложно влияние на критич. параметры молекулярно-массового распределения. Для гибкоцепного полимера достаточно ВЫСОКО мол. массы с узким распределением характерен очень резкий переход из области вязкотекучего в вынужденное высокоэластич. состояние. Такой переход приводит к возникновению скачка объемного расхода при Т . и искажениям струи, носящим, как правило, периодич. характер. По моро расширения молекулярномассового распределения резкость перехода в вынужденное высокоэластич. состояние ослабляется, и Т. в. проявляется в широкой области скоростей сдвига. Для полимеров с достаточно широким распределением переход от течения к скольжению вообще не наблюдается, материал ведет себя как типичная аномальновязкая жидкость, а Т. в. проявляется лишь в нерегулярных дефектах струи. Автоколебательный режим выдавливания в этом случае оказывается невозможным. Условия возникновения Т. в. при переработке полимеров, приготовленных смешением фракций существенно [c.333]

    Теория сополиконденсации. Помимо характерного также и для гомополиконденсации расчета мол. массы полимера и его молекулярно-массового распределения, перед теорией С. стоят еще след, задачи 1) вычисление среднего состава сополимера, т. е. мольной доли элементарных звеньев каждого типа 2) расчет композиционной неоднородности сополимера, описываемой рас-цределением отдельных макромолекул по их составу 3) исследование влияния активностей и соотношения мономеров на порядок распределения звеньев в сополимере. Эти задачи решаются как статистическим, так и кинетич. методом. Первый из них заключается в вычислении вероятностей образования структур определенного вида, а второй предполагает расчет концентраций индивидуальных продуктов путем интегрирования кинетич. ур-ний процесса. [c.220]

    Для определения молекулярно-массового распределения полистирола использовалось [983] турбидиметрическое титрование согласно [984, 985]. Раствор полистирола в метилэтилкетоне титровали изопропанолом. В очень обстоятельной работе [984] изучалось влияние таких факторов, как величина и форма взвещенных частиц, зависимость величины поправки па мутность от концентрации и растворимости полимера от концентрации и молекулярной массы. Авторы разработали также метод введения поправок, связанных с выпадением осадка в ходе титрования, и предлол или способ определения точки осаждения в зависимости от средневесовой молекулярной массы. Для определения средней молекулярной массы полистирола в работе [986] применяли эластоосмометрию. [c.243]

    Эти результаты свидетельствуют, с одной стороны, о важной роли концов цепей при кристаллизации низкомолекулярных образцов и, с другой стороны, о том, что термодинамически наиболее устойчивой формой кристалла полимера является такая, в которой концы макромолекул локализованы на поверхности кристалла (рис. П1.40). На основании этих результатов Линденмейер [30] развил равновесную теорию кристаллизации, которая учитывает влияние концевых групп цепи. Расчет плотности свободной энергии кристалла, выполненный с помощью электронно-вычислительной машины, показал, что в случае монодисперсных образцов (по молекулярной массе) кривая свободной энергии проходит через минимумы, соответствующие 1, 1/2, 1/3,. .. и т. д. длины полностью вытянутой макромолекулы, в то время как для образцов с широким молекулярно-массовым распределением наблюдается лишь один минимум при определенном значении средней молекулярной массы. Работа Линденмейера вносит существенный новый вклад в равновесную теорию кристаллизации полимеров и поэтому заслуживает внимания, однако ее истинная ценность, вероятно, станет более очевидной в будущем. [c.197]

    В отличие от ионных кристаллов [389] и низкомолекулярных жидкостей [390-392] для высокомолекулярных соединений характерны заметные различия в свойствах объема, граничного и переходного слоев, когда аномалии вязкости наблюдали на расстоянии до 500 мкм от твердой поверхности [393]. Развитие инструментальной техники позволяет выявить ряд более тонких деталей. Например, в случае жидких полидиметилсилоксанов с вязкостью (0,05-г"20,0)-м /с и узким молекулярно-массовым распределением, нанесенных на полированную стальную подложку, резкое снижение вязкости наблюдается в слоях, расположенных на расстоянии 0,2-0,3 мкм от твердой поверхности. В слоях толщиной до 1,5-2,0 мкм вязкость на 30-40% превышает объемное значение [394]. Подобные закономерности связывают с жесткостью макромолекул и межмолекулярным взаимодействием между ними, различая не менее трех профилей скоростей течения полимерной жидкости одного состава в зависимости от величины энергии ее когезии [395]. Отсюда ясно, что роль твердого субстрата зависит от молекулярной массы полимера. Коэн и Рейч методом двойного лучепреломления недавно оценили роль этого фактора [396]. Для низкомолекулярного полистирола (М = 800) упорядочивающее влияние стеклянной поверхности простирается не далее 1 мкм, тогда как с ростом молекулярной массы до 10 это расстояние увеличивается не менее, чем на порядок. Исследование аномалий вязкости растворов полимеров, протекающих через пористые среды, позволило показать, что влияние твердой поверхности распространяется на расстояние, меньшее характеристического линейного размера слоя [397]. [c.90]

    Особо следует остановиться на влиянии температуры полимеризации на структуру и свойства полимеров, полученных при свободнорадикальной полимеризации. Снижение температуры положительно сказывается не только на регулярности чередования звеньев в цепи, но и на величине молекулярной массы (она растет вследствие уменьшения вероятности обрыва реакционной цепи яри уменьшении подвижности макрорадикалов). Снижается или полностью отсутствует разветвленность макромолекул (при низких температурах вероятность отрыва водорода от макромолекулы свободным радикалом меньше, чем вероятность его реакции с двой ными связями молекул мономера вследствие меньшей энергии ак тивации последней). Наконец, при более низких температурах су жается молекулярно-массовое распределение полимера, так как по движность макрорадикалов уменьшается и снижается доля их столкновений при малых степенях полимеризации, что уменьшает долю низкомолекулярнон фракции. [c.32]

    Механизм удерживания сорбата этой ХНФ очень сложен и до конца не выяснен. На разделение, как было показано, сильное влияние оказывают очень многие факторы, например средняя молекулярная масса полимера, молекулярно-массовое распределение, природа растворителя, использованного для нанесения полимера на подложку, и природа самой подложки [51]. Тем не менее вполне очевидно значительное улучшение разделения вследствие применения жесткой матрицы и широкого выбора подвижных фаз. Это, в частности, демонстрирует рис. 7.5, на котором приведены хроматограммы разделения рацемического оксида мрснс-стильбена, полученные в четырех различных условиях. Влияние силикагелевой подложки на эффективность колонки, а так-же влияние подвижной фазы на (X достаточно очевидно. Степень кристалличности МТАЦ, [c.116]

    Влияние молекулярно-массового распределения на наибольшую ньютоновскую вязкость. Формула (2.59) получена для начальной вязкости монодисперсных полимеров. Для полидисперсных nonmiepoB сразу возникает вопрос каким значением усредненной дюлекулярной массы следует пользоваться в соотношениях формулы (2.59) Ответ на вопрос о правильном выборе усредненного значения молекулярной массы дает измерение вязкости полимеров с известными ММР. Исследования такого рода были проведены для полистирола, поливинилацетата и некоторых других полимеров. Они показали, что если смешиваются узкие фракции или монодисперсные полимеры, у которых молекулярные массы выше, чем Мс, то вязкость смесей может вычисляться по формуле (2.59), в которой используют [c.189]

    Кривые скорости разложения на более глубоких стадиях процесса свидетельствуют (см. рис. 1.5), что исходные значения молекулярной массы полимера и его молекулярно-массовое распределение не оказывают существенного влияния на скорость термодеструкции. Это связано с тем, что уже на начальной стадии разложения молекулярная масса даже высокомолекулярного полиизобутилена, как было сказано выше, резко снижается за счет разрывов углерод-углеродных связей главной цепи с образованием низкомолекулярного (х 25ООО) полимера и мономера. [c.18]

    Деструкция наполненных полимеров характеризуется рядом особенностей, которые не свойственны исходным (ненаполненным) полимерам. Эти особенности, как правило, связаны с предысторией получения наполненных полимеров. В частности, существующие методы введения нанолнителей влияют не только на физико-химические свойства полимеров, но и на их молекулярные характеристики. Так, смещение расплавов или растворов полимеров с дисперсными наполнителями приводит в ряде случаев к заметному изменению молекулярной массы и молекулярно-массового распределения полимеров по сравнению с их исходными. Это связано в основном с механокрекингом нанолнен-ных полимеров, который протекает довольно интенсивно в присутствии наполнителей [110]. Образующиеся осколки макромолекул взаимодействуют между собой или с поверхностью наполнителя с формированием привитого слоя. Эти механохи-мические процессы, приводящие к изменению молекулярных характеристик полимеров, отражаются и на их термической и термоокислительной стабильности, как правило, снижая ее [111]. Кроме того, условия введения наполнителей в полимеры (температура, концентрация, интенсивность перемешивания, среда, присутствие сорбированных влаги, кислорода и т. п.) оказывают также существенное влияние на процесс разложения полимеров. Особенно существенна роль наполнения в процессах разложения полимеров в том случае, когда они синтезированы в присутствии наполнителей, так как последние оказывают влияние на весь комплекс свойств и структуру получаемых полимеров [81, 112]. [c.106]


Смотреть страницы где упоминается термин Влияние молекулярной массы и молекулярно-массового распределения полимеров: [c.148]    [c.366]    [c.475]    [c.472]    [c.211]    [c.193]    [c.390]    [c.119]    [c.117]   
Смотреть главы в:

Диффузия в полимерных системах -> Влияние молекулярной массы и молекулярно-массового распределения полимеров




ПОИСК





Смотрите так же термины и статьи:

Массовая

Молекулярная масса

Молекулярная масса полимеров

Молекулярно-массовое распределение

Молекулярный вес (молекулярная масса))

Молекулярный вес распределение

Полимеры массы

Полимеры распределения

Распределение по молекулярным массам

Распределение по молекулярным массам массовое



© 2025 chem21.info Реклама на сайте