Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация химической природе

    Степень окисления элемента — понятие условное, однако оно весьма полезно. Значениями степеней окисления элементов пользуются при составлении формул соединений при написании и подборе коэффициентов в уравнениях реакций для классификации соединений, характеристики их химической природы и свойств для пред- [c.82]


    В ходе химико-технологических процессов химическому превращению подвергаются разнообразные вещества, обладающие различными физико-химическими свойствами. Разнообразна и сама природа химического взаимодействия. Естественно, что этому многообразию соответствует многообразие химических реакторов. Однако в научной литературе практически отсутствует сколько-нибудь приемлемая классификация химических реакторов, еслп иметь в виду не конструктивные особенности аппаратов, а внутреннюю сущность процессов, характеризуемую определенным сочетанием физических и химических явлений. [c.9]

    Задачи системного анализа требуют четкого выделения наиболее существенных свойств элементов рассматриваемых систем для внесения структурной упорядоченности в огромное разнообразие элементов ФХС и их свойств. Внесение структуры в набор слабоструктурированных элементов, составляющих данную систему, можно осуществить, например, с помощью их классификации, а также заданием операционных причинно-следственных отношений между переменными, входящими в определяющие функциональные соотношения элементов. Классификацию элементов ФХС можно организовать по различным признакам, например по виду субстанции, преобразование которой отражает элемент, по числу связей, ассоциированных с данным элементом, по виду распределенности переменных состояния элемента (сосредоточенность или распределенность в пространстве) и т. д. Однако с точки зрения эффективности системного анализа предпочтительнее классифицировать элементы ФХС исходя из их физико-химической природы. При этом выделяются следующие группы элементов  [c.30]

    Нефти разных месторождений и даже из разных скважин одного месторождения отличаются друг от друга по физическим и химическим свойствам. Известно, что именно свойства нефти определяют направление ее переработки, решающим образом влияют на качество получаемых нефтепродуктов. Определенную помощь при выборе наилучшего варианта переработки нефти может оказать классификация нефтей, отражающая их химическую природу. [c.22]

    Способность ПАВ при адсорбции на поверхности раздела фаз радикально изменять ее свойства и тем самым влиять на многие важные свойства дисперсных систем может быть существенно различной в зависимости от химической природы и строения граничащих фаз и молекул ПАВ, от условий их применения. Следуя классификации Ребиндера [38], можно выделить 4 группы ПАВ по физико-химическому механизму их воздействия на межфазную границу и дисперсную систему в целом  [c.69]


    В качестве примера можно привести классификацию эмульгаторов по химической природе и длине углеводородной цепи с помощью ГЛБ. [c.188]

    Однако на уровне философского осмысления появились первые догадки о существовании "систематического" порядка среди них. Как отмечали Е. Рабинович и Э. Тило [10, с. 45] "... первым, кто занялся поисками "естественной системы элементов" был, по-видимому, И. Г. Марне". В своей книге "О числе элементов", опубликованной в 1786 г. (примерно в то же время, когда Лавуазье предпринимал первые попытки классификации химических элементов), он писал "Замечательная мысль о том, что все существующее в природе, по всей вероятности, связано в один беспрерывный ряд. ..давно было признано, что от мельчайшей пылинки, солнечного луча до святейшего Серафима можно воздвигнуть целую лестницу творений, хотя в ней и будут пока еще встречаться местами значительные пробелы". По его мнению, этот прогрессивный ряд должен охватывать и химические элементы."... Не только вследствие недостатка различных названий, но и ради преимущества в том, что каждый элемент будет иметь свое место в лестнице природы, было очень удобно представлять основные свойства под названием определенных чисел...", — отмечал он. Его слова оказались пророческими. Как мы увидим дальше, Менделеев обнаружил периодическую повторяемость свойств химических элементов только после того, как (по его выражению) "расположил их в один ряд по возрастанию атомного веса". [c.31]

    Наиболее общей является классификация по природе процессов разделения химические и физико-химические (экстракция, сорбция, соосаждение, электрохимические методы и др.) и физические (испарение, зонная плавка, направленная кристаллизация и др.). [c.308]

    Степень (состояние) окисления элемента — понятие условное, однако оно весьма полезно. Значениями степеней окисления элементов пользуются при составлении формул соединений написании и подборе коэффициентов в уравнениях реакций для классификации соединений, характеристики их химической природы и свойств предсказания направления течения и продуктов химических реакций и т. д. [c.79]

    Кратко познакомившись с основными методами теории химической связи, перейдем к обсуждению ее свойств. Свойства химической связи проявляются в свойствах различных типов молекул, кристаллов и других объединений атомов и молекул. Ранее считалось, что и природа различных видов связи (ковалентной, ионной, металлической, водородной и др.) различна. Сегодня можно считать, что известные на сегодня виды химической связи едины по своей природе. Поэтому существует возможность единой их классификации. Химическую связь можно подразделить на различные виды. [c.113]

    В книге кратко излагаются история развития нефтеперерабатывающей промышленности Советского Союза, роль русских и советских ученых в формировании науки о химии и технологии нефти, химическая природа нефти, основные физико-химические свойства нефтей и нефтяных фракций, теоретические основы перегонки простых и сложных смесей углеводородов, конструктивное оформление и технологический расчет основной нефтеперегонной аппаратуры, классификация, описание и анализ технологических схем, условий эксплуатации и проектирования промышленных атмосферных и атмосферно-вакуумных установок для перегонки нефтей и нефтепродуктов, вопросы техники безопасности и борьбы с коррозией нефтеперегонной аппаратуры. [c.2]

    Классификация электродов проводится по химической природе веществ Ох и Red, участвующих в электродном процессе. Электродом 1-го рода называют систему, в которой восстановленной формой является металл электрода, а окисленной формой — простые ионы этого же металла. Примером может служить система Си ++ +2ё Си, для которой [c.118]

    По термодинамическому признаку, а именно, по фазовому состоянию взаимодействующих веществ химические реакции можно классифицировать на процессы, протекающие в газовых фазах, жидких фазах, в том числе растворах, ня границе раздела газ — жидкость, в твердых фазах, на границах раздела газ — кристалл, жидкость — кристалл. При рассмотрении реакций в той или иной фазе следует выделять превращения, которым подвергается одно вещество, и взаимодействия между веществами разной химической природы, В соответствии с этой классификацией и изложен материал в последующих главах. [c.8]

    КЛАССИФИКАЦИЯ ЭЛЕМЕНТОВ ПО ХИМИЧЕСКОЙ ПРИРОДЕ [c.34]

    Элементарными, или простыми, веществами называются вещества, построенные из атомов одного химического элемента. Их иногда называют также гомоядерными соединениями. Они являются формой существования химических элементов в свободном виде и свойства элементарных веществ соответствуют химической природе элементов. Очевидно, что и классификация элементарных веществ должна соответствовать классификации химических элементов. Однако некоторые химические элементы образуют по нескольку элементарных веществ — так называемые аллотропные видоизменения (см. 1.2). В этих случаях наибольшее соответствие природе элемента наблюдается у видоизменений, термодинамически наиболее устойчивых в данных условиях. [c.36]


    Практически часто применяется смешанная классификация химических реакций в полимерах по видам соответствующих превращений макромолекул и видам воздействия на них. В ряде случаев определенный вид воздействия приводит и к одному виду изменений макромолекул, но иногда в зависимости от химической природы полимеров один И тот же вид воздействия может привести к разным изменениям структуры макромолекул. Например, при действии высоких температур может протекать деструкция, т. е. распад линейных макромолекул у одних полимеров (полипропилен, полистирол), циклизация — у других (полиакрилнитрил), образование сетчатых структур — у третьих (1.2-полибутадиен, сополимер бутадиена со стиролом), а также смешанные случаи (полиизопрен и др.). При облучении, например, полиэтилена одновременно протекают реакции соединения макромолекул друг с другом (сшивание) и распада отдельных молекул (деструкция). [c.219]

    Термодинамическая трактовка полярности и селективности неподвижных фаз. По современным представлениям, развиваемым Р. В. Головней и сотр., классификацию неподвижных жидких фаз и адсорбентов по полярности следует проводить на основе строгой термодинамической оценки способности сорбента к различным видам межмолекулярных взаимодействий (неспецифических, обусловливаемых физическими силами, и специфических взаимодействий химической природы, включая и возможное образование водородной связи). Согласно [861 неправомерно использовать термин полярность безотносительно конкретной [c.272]

    В настоящее время общепринятой (и мы также будем придерживаться ее) является классификация природных соединений на две основные группы вещества первичного биосинтеза и вещества вторичного метаболизма. Внутри первой группы вещества делятся на классы в соответствии с их химическим строением (по основным функциональным группам) и отчасти с их биологической функцией. Внутри второй группы вещества классифицируются также в соответствии с их принципиальной химической природой и путями биосинтеза. Внутри каждого класса, с учетом особенностей отдельных соединений, указывается их принадлежность к природным источникам и общность по деталям химического строения. Биологическая активность природных соединений рассматривается уже не как классификационный признак, а как свойства этих веществ. Т.е. мы видим, что основные классификационные признаки природных соединений — это путь биосинтеза и химическая структура. [c.9]

    После того как была установлена химическая природа ви нов, выяснилось, что все они относятся к различным класса ганических соединений. Поэтому стало возможным принять хи скую классификацию  [c.6]

    Классификация элементов, явившаяся одним из крупнейших достижений в пауке, была основана на сопоставлении фактов химической природы. [c.190]

    ГОСТ 17 4 1.02—83. Охрана природы. Почвы Классификация химических веществ для контроля загрязнения. [c.315]

    Другая использовавшаяся классификация была основана на продуктах гидролиза. Простыми белками, или протеинами называют белки, дающие при гидролизе только аминокислоты (или продукты их деградации). С другой стороны, сложные (конъюгированные) белки дают при расщеплении не только аминокислоты, но и другие органические или неорганические молекулы (просте-тические группы). Классификация, основанная на химической природе различных простетических групп, приводит к типичным [c.220]

    Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе, но до сих пор сохраняются и буквенные обозначения. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины. В приводимой классификации витаминов, помимо буквенного обозначения, в скобках указан основной биологический эффект, иногда с приставкой анти , указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания далее приводится номенклатурное химическое название каждого витамина. [c.208]

    По степени опасности вещества, загрязняющие почзу, подразделяют па три класса 1—высоко опасные, 2 — умеренно опасные, 3 — мало опасные. Класс опасности определяют не менее чем по трем показателям в соответствии с ГОСТ 17.4.1.02— 83 Охрана природы. Почвы. Классификация химических веществ для контроля загрязнения . [c.113]

    Асфальто-смолистые вещества являются неотъемлемым компонентом почти всех нефтей. Редко встречающиеся белые нефти представляют собой продукты разной степени обесцвечивания темных смолосодержащих нефтей, мигрировавших через толщи глин из глубоких недр земли. Содержание и химический состав асфальтосмолистых веществ в значительной мере влияют на выбор направления переработки нефти и набор технологических процессов в схемах действующих и перспективных нефтеперерабатывающих заводов. В связи с этим одним из главных показателей качества товарных нефтей при их классификации является относительное содержание асфальто-смолистых веществ. Количество асфальто-смолистых веществ в легких нефтях не превышает 4—5 вес. %, в тяжелых нефтях достигает 20 вес. % и более. Химическая природа асфальто-смолистых веществ точно не установлена. Она продолжает быть предметом глубоких исследований многих нефтехимиков. Причиной этого является исключительная сложность состава этих веществ, которые представляют собой комплексы полициклических, гетероциклических и металлоорганических соединений. [c.32]

    Аофальтообразные вещества обнимают собой довольно большую группу видов, обладающих сходными внешними признаками и часто внутренними свойствами. Однако химическая природа большинства их совершенно неизвестна, почему не следует забывать, что сходство между теми или другими представителями этого класса может быть чисто физическим. Классификация асфальтовых веществ, в виду неопределенности химического состава компонентов их в первичном состоянии, представляет большие затруднения и носит условный характер. Близкое аналитическое определение в большинстве случаев даже невозможно. [c.353]

    Любую ФХС можно представить в виде элементов и их связей. Под элементом понимается самостоятельная и условно неделимая единица системы. Связи между элементами проявляются в материальных, энергетических и информационных потоках между ними. Ниже будет показано, что связи, ассоциируемые с потоками субстанций, допускают естественное обоснование их существования, четкую классификацию и однозначное описание с помощью переменных физико-химической природы. То же самое справедливо и в отношении элементов, которые ассоциируются с элементарными преобразователями потоков субстанций. Так, в качестве элементов будут приняты диссипаторы, накопители, преобразователи, источники, стоки, передатчики, различного типа операторы совмещения потоков субстанций в локальной точке пространства и т. д. Топологическое описание ФХС состоит в построении так называемой топологической структуры [c.19]

    Кинетика и механизм комплексообразования. По вопросу классификации явления комплексообразования мнения исследователей расходятся.>.стинная природа связи между комплексообразующими углеводородами и молекулами карбамида пока не установлена. Одни исследователи [6, 1б]объясняют эту связь силами Ван-дер-Ваалъса, т.е. рассматривают как чисто физическое явление и считают криоталлические комплексы соединениями адсорбционной природы. Эта точка зрения подтверждается рентгенограммой размещения внутри кристаллической решетки карбамида молекулы углеводорода. Возможность такого размещения определяется размерами молекул и каналов в решетке, а не химической природой вааимодействунь щих веществ. [c.36]

    Содержание сераорганических соединений в нефтях колеблется в довольно широких пределах. В настоящее время количественная характеристика содержания серы в нефтях является одним из существенных показателей технологической классификации их. Наиболее богатые водородом легкие парафино-циклопарафиновые нефти характеризуются самым низким содержанием серы. Нефти, бедные водородом, т. е. высокосмолистые нефти ароматического основания, как правило, содержат самые высокие количества серы. В нефтях нафтенового и ароматического основания нередко наблюдается па-раллелелизм в содержании сера- и азоторганических соединений. Особенно ясно этот параллелизм проявляется в высокосернистых нефтях южноузбекистанских месторождений. По содержанию серы, которое, как видно из приведенных ниже данных, изменяется в нефтях от сотых долей процента до 5—7%, можно в известной степени судить о химической природе самой нефти. [c.329]

    Во-вторых, может быть расмотрена классификация химических реакций в полимерах в зависимости от молекулярной природы реагентов при различной их химической природе полимер — низкомолекулярное вещество функциональные группы внутри одной макромолекулы функциональные группы разных макромолекул химический распад (деструкция) макромолекул. По этой классификации за основу взято исходное состояние реагирующих компонентов по высоко- или низкомолекулярной природе обоих или одного из них. Конечное состояние может быть также высоко- или низкомолекулярным (последнее — в случае деструкции макромолекул). [c.218]

    В зависимости от физико-химической природы промежуточных фаз эти взаимодействия приводят к образованию двух групп объектов. Химия неметаллических фаз изучает объекты, возникающие при взаимодействии неметалл- -неметалл и неметалл-Ь металл. А предмет химии металлических фаз, или металлохимии, составляет обширный класс разнообразных фаз, образованных в результате взаимодействия катионообразователей друг с другом. Правомерность такого разделения подтверждается различием природы образующихся соединений. Ниже представлена классификация взаимодействий в рамках элементохимии, в которой отмечены характерные особенности и признаки промежуточных фаз различного типа. [c.363]

    В соответствии с разделением элементов на катионо- и анионообразователи — металлы и неметаллы — в рамках элементохимии возможны три типа взаимодействия неметалл + неметалл, неметалл + металл, металл + металл. В зависимости от физико-химической природы промежуточных фаз эти взаимодействия приводят к образованию двух групп объектов. Химия неметаллических фаз изучает объекты, возникающие при взаимодействии неметалл + неметалл и неметалл + металл. А предмет химии металлических фаз, или металлохимии, составляет обширный класс разнообразных фаз, образованных в результате взаимодействия катионообразователей друг с другом. Правомерность такого разделения подтверждается различием природы образующихся соединений. Ниже представлена классификация взаимодействий в рамках элементохимии, в которой отмечены характерные особенности и признаки промежуточных фаз различного типа. Приведенная классификация относительна уже хотя бы потому, что нет четкой грани между металлами и неметаллами. В соответствии с этим по ряду признаков объекты химии неметаллических фаз обладают сходными свойствами. Разделение их по свойствам возможно провести только для фаз, подчиняющихся правилу формальной валентности, — так называемых нормально-валентных соединений. Характерной особенностью нормально-валентных продуктов взаимодействия в рамках химии неметаллических фаз является наличие только "катион-анионных" связей. [c.209]

    Поскольку лекарственные вещества чрезвычайно разнообразны по химической природе и биологическому действию, рациональная их классификация имеет важное значение для их сисгематнзации и изучения при этом возможна химическая или фармакологическая классификация. [c.101]

    В некоторых случаях, когда группа лекарственных веществ по химическим и фармакологическим признакам связана с веществами иной химической природы, иногда целесообразно рассматривать такие вещества совместно, например антималярийные средства, к которым относятся производные акридина и хинин, или местноансстезпрующие средства, производные л-аминобензойной кислоты, кокаин и др. В силу этих обстоятельств, при современном развитии фармацевтической химии, химическая классификация лекарственных веществ органической природы не может быть строго выдержана. [c.102]

    Сорбенты, используемые для ВЭЖХ, делят на несколько групп, каждая из которых, в свою очередь, подразделяется на типы. Классификация сорбентов может основываться на ряде дризнаков. Общепринятым является разделение сорбентов на руппы по химической природе матрицы (основы) сорбента, а по типам — по методу химической обработки матрицы, делающей ее пригодной для использования в определенном виде хроматографии. [c.87]

    Но в любом случае, какая-то, хоть и ограниченная, классификация является полезной, поэтому в понятия витамины" и коферменты" можно проставить следующие акценты и ввести некоторые определения. Витаминами можно назвать некую группу низкомолекулярных органических соединений различной химической природы, необходимых для осуществления жизненно важных биохимических процессов in VIVO Природные соединения, не являющиеся витаминами, но легко превращающиеся в них в организме человека, называются провитаминами. Если несколько соединений близкой химической природы выполняют одну и ту же витаминную функцию в организме — их называют витамерами. [c.267]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    Как показано в разделе 3.3, правильный выбор элюирующей силы подвижной фазы — необходимое, но не всегда достаточное условие успешного разделения. Для целенаправленного выбора или изменения состава подвижной фазы следует, ввести рациональную классификацию р аств6р йтёлей по их селективности, как это сделано в отношении элюирующей силы. Основой такой классификации является различная способность растворителей вступать в межмолекулярные взаимодействия различных типов. Например, хлороформ, эфир и октиловый спирт имеют значения е° 0,40 0,38 и 0,50 соответственно. Следовательно, использовав эти растворители в качестве компонентов Б , Бг, Бз в бинарных смесях АБь АБ2, АБз, можно получить в среднем удовлетворительные величины удерживания для некоторой группы сорбатов сходной химической природы. Однако при рассмотрении протонодонорных и протоноакцепторных свойств взятых трех растворителей ясно, что хлороформ, окта-нол и эфир должны по-разному взаимодействовать с различными сорбатами. Так, хлороформ, будучи донором протонов, особенно сильно должен способствовать элюированию акцепторов, например аминов. Наоборот, эфир, являющийся акцептором, будет сильнее ассоциироваться с донорами и ускорять именно их элюирование. [c.48]

    Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков (см. главу 2) основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), пуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы). [c.72]


Смотреть страницы где упоминается термин Классификация химической природе: [c.122]    [c.9]    [c.26]    [c.93]    [c.102]    [c.632]    [c.28]    [c.72]    [c.160]   
Склеивание металлов и пластмасс (1985) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

РНК химическая природа



© 2025 chem21.info Реклама на сайте