Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды выделение

    В XIX в. проблемой получения фтора занимались многие химики, начиная с Гемфри Дэви. Успех выпал на долю французского химика Анри Муассана (1852—1907). Муассан решил, что поскольку платина относится к числу тех немногих веществ, на которые фтор не действует, то не остается ничего другого, как изготовить, несмотря на дороговизну, все оборудование из платины. Более того, чтобы понизить активность фтора, он охладил реакционную смесь до —50°С. Поместив раствор фторида калия в плавиковой кислоте в специально изготовленный платиновый сосуд, Муассан пропустил через раствор электрический ток и достиг цели. Так в 1886 г. был наконец выделен бледно-желтый газ — фтор. [c.142]


    Все многообразные соединения благородных газов получают, исходя из фторидов. Фториды же получают прямым синтезом из простых веществ. Образование фторидов ксенона происходит с выделением теплоты  [c.498]

    Фтористоводородная кислота при взаимодействии с олефинами и особенно диенами дает фториды, частично растворимые в ней. Алкилфториды разлагаются при нагревании до - 215°С, от воды и неразлагающихся фторидов фтористый водород легко отделяется перегонкой. Используемая в процессе кислота содержит 80—90% НР и менее 1% воды. Расход фтористого водорода составляет всего примерно 0,7 кг/м алкилата и обусловлен в основном неполной регенерацией при перегонке из углеводородных потоков и выделением из них при защелачивании. [c.181]

    Подобно указанной схеме при соответствующих условиях (pH, избыток лиганда и др.) восстанавливаются и другие комплексные анионы металлов, например пирофосфаты, роданиды или фториды. В зависимости от концентрации свободного комплексообразующего лиганда и значения pH разряжающимися частицами могут быть ионы с большим или меньшим координационным числом. Во всех этих случаях торможение процесса выделения металлов на катоде может быть весьма значительным вследствие затруднений подвода анионов к катоду или недостаточной скорости отвода от катода лигандов, освобождающихся после разряда ионов, а также вследствие неблагоприятных условий адсорбции разряжающихся ионов на катоде. Последнее определяется знаком и величиной заряда поверхности металла в данных условиях [7]. [c.341]

    Загрязненный осадок кремневой кислоты после прокаливания и взвешивания обрабатывают в платиновом тигле избытком плавиковой кислоты и небольшим количеством серной кислоты. Далее содержимое тигля выпаривают почти досуха, причем вся кремневая кислота удаляется в виде легколетучего 51Р . Окислы же титана, железа и др. образуют в этих условиях нелетучие фториды. При дальнейшем нагревании серная кислота вытесняет плавиковую кислоту из фторидов титана, железа и др. и образуются сульфаты металлов, которые при последующем прокаливании вновь переходят в окислы. Остаток взвешивают и по разности вычисляют точное содержание кремневой кислоты. Затем нелетучий остаток окислов переводят в раствор, сплавляя с содой или пиросульфатом, и для дальнейшего анализа присоединяют к общему раствору, полученному после выделения геля кремневой кислоты. [c.112]

    В состав электролита помимо чистой серной кислоты или чистого бисульфата аммония входят поверхностно-активные добавки (промоторы), такие, как фторид, хлорид, роданид и цианид аммония. Анионы этих солей, адсорбируясь на активных центрах поверхности платины, повышают перенапряжение выделения кислорода и этим увеличивают выход по току 5208. Анионы р- и С1- в ходе технологического процесса почти не расходуются. Однако они повышают агрессивность среды, будучи активаторами коррозии, и это затрудняет их использование. Роданид аммония, наоборот, приходится непрерывно вводить в анолит, поскольку анионы СЫ5 легко окисляются на аноде. Впрочем, продукты разложения роданида также обладают промотирующим действием. В отличие от галогенидов роданид не влияет на коррозионные свойства электролита, в отличие от циа- [c.186]


    При электролизе с нерастворимым анодом на электроде может окисляться или ион ОН , или другие ионы, или недиссоциированные молекулы восстановителей, присутствующие в растворе. Как видно из табл. 20 и рис. 66, потенциал кислородного электрода в широкой области pH отрицательнее потенциалов галоидных ионов (за исключением иона 1 ). Однако при наличии в растворе ионов галогенов вследствие высокой поляризации реакции выделения кислорода в первую очередь на аноде выделяется иод, затем — бром. При наличии ионов С1 в растворе при малых плотностях тока идет выделение кислорода, при высоких плотностях тока наряду с этой реакцией идет также окисление ионов С1 и выделение С1г. Фтор из-за положительного значения потенциала не может быть выделен из водных растворов на аноде, его получают электролизом расплавленных фторидов. На аноде не окисляются также ионы 50Г, РО4, МОз, поэтому в их присутствии в растворе на нерастворимом аноде протекает лишь реакция выделения кислорода.  [c.204]

    Фтор в свободном виде получают анодным окислением при электролизе расплава фторидов и гидрофторидов щелочных металлов. Для выделения в свободном виде хлора, брома и иода из галогенидов в лаборатории используют подходящие окислители. в частности, гипохлорит кальция и бромат натрия  [c.220]

    Простые соли кобальта (III) неустойчивы. Так, фторид быстро окисляется водой с выделением кислорода. Это значит, что трехзарядный ион кобальта активно присоединяет электрон и является сильнейшим окислителем. Потенциал системы Со +, Со + равен -Н1,81В. Гидроксид кобальта (III)—вещество черного цвета — имеет строение НО—Со = 0. [c.215]

    Редкоземельные элементы обладают весьма близкими химическими свойствами и при отделении их от других элементов практически всегда выделяются в виде суммы соединений всех редкоземельных элементов (например, оксалатов или фторидов). Для разделения и выделения отдельных элементов этой группы используют различные химические и физико-химические методы. Для определения отдельных редкоземельных элементов в их смеси наряду с некоторыми физическими методами используют спектрофотометрические методы. [c.200]

    Методы выделения суммы окислов редкоземельных элементов зависят от их природы [57]. Многие минералы, содержащие редкоземельные элементы, разлагаются только фтористоводородной кислотой и переходят в осадок в виде фторидов в дальнейшем их переводят в сульфаты, из растворов которых осаждают их или в виде гидроокисей аммиаком, или оксалатов. Тот и другой осадок после прокаливания дают сумму окислов редкоземельных элементов. [c.205]

    I. Летучести фторидов. Выделение и очистка урана из облученного топлива дробной дистилляцией UFg описана Лавро-ским [5] и Гойманом, Фогелем и Кацем [18]. В процессе используется высокая летучесть UFg. Благодаря различию в давлении паров UFg перегоняется из расплава фторидов, полученного растворением облученного урана в таких галоидных соединениях фтора, как BrFg или lFg. Свойства веществ, участвующих в процессе дистилляции фторидов, приведены в табл. 8. 13. [c.349]

    Аммиак не осаждает полностью гидроокись бериллия из растворов фторидов выделение гидроокиси начинается при pH 6,3 [56]. Из раствора Вер2 стехиометри-ческое количество аммиака осаждает только 65% бериллия. Полное осаждение бериллия даже 30%-ным избытком аммиака дос- [c.25]

    В растворе плавиковой кислоты выделения фторида кремиия ie происходит, так как он взаимодействует с молекз ла , я HF образованием хорошо растворимой комплексной кремнефторо-юдородной лислоты  [c.363]

    Алюминий энергично взаимодействует с галогенами, образуя А1Гз. Фторид алюминия — малорастворимое и тугоплавкое вещество, остальные галогениды алюминия хорошо растворимы не только в воде, но и во многих органических растворителях, легкоплавки и летучи. В расплавленном состоянии они неэЛектро-проводны. Они дымят на воздухе вследствие испарения, поглощения паром влаги и образования твердых кристаллогидратов. Растворение галогенидов алюминия в воде сопровождается выделением большого количества теплоты если кусок А1Вгз бросить в воду, то происходит сильный взрыв (ДЯ° растворения [c.341]

    Стандартный раствор Ti(S04)2, содержаш,ий 0,05 мг титана в I мл. Навеску 0,0834 г х.ч. Ti02 обрабатывают смесью (1 3) серной и плавиковой кислот прн нагревании до полного растворения диоксида титана и выпаривают большой избыток H2SO4, до выделения белых паров SO3, для удаления фторида водорода. Затем раствор охлаждают, разбавляют водой и выпаривание повторяют. К полученному раствору добавляют 100 мл дистиллированной воды и 5 % раствором H2SO4 доводят объем до 1 л. [c.220]

    Совместное осаждение 5п и N1 на катоде достигается ири добавлении фторидов к. члоридам олова и никеля, которые образуют с оловом прочные комплексные анионы 5пр4 и ЗпРгС . При этом равновесный и катодные потенциалы олова приобретают более электроотрицательные значения. Благодаря этому при определенных плотностях тока достигается сближение потенциалов выделения эти.к. металлов на катоде. Совместному осаждению 5п и N1 способствует также неодинаковая деполяризация при разряде ионов обои.х металлов вследствие образования химического соединения Ы18п. [c.53]


    Образовавшиеся частицы оксида магния осаждаются на поверхности мелких капель металла и увлекают их в гялам. Попадание оксида магния на катод вызывает его пассивацию. На количестве осаждаемого металла сказывается состояние стальной поверхности катода. Чистая поверхность катода хорошо смачивается магнием и на ней образуются крупные капли осажденного металла. Образование пассивирующей пленки на катоде, состоящей в основном из оксида магния и дисперсного железа, способствует образованию мелких корольков металла. Покрытые оксидом магния корольки уносятся в анодную зону, где постепенно окисляются хлором. Добавки фторидов кальция и натрия благоприятствуют образованию более крупных капель магния за счет десорбции оксида магния с мелких частиц металла. Пассивную пленку очищают механически или посредством выделения щелочного металла на катоде при электролизе обедненного электролита. После очистки катода и добавки свежей порции хорошо обезвоженного электролита выделяющийся магний вновь смачивает поверхность катода. [c.146]

    При электролизе водных растворов бескислородных кислот и их солей (кроме HF и фторидов) у анода разряжаются анионы. В частности, при электролизе растворов HI, НВг, НС1 и их солей у анода выделяется соо уветствующий галоген. Отметим, что выделение хлора при электролизе НС1 и ее солей противоречит взаимному положению систем [c.283]

    В растворе плавиковой кислоты выделения фторида кремния не происходит, так как он взаимодействует с молекулами НР с образованием хорошо растворимой комплексной гексафторокремниевой (кремнефтороводородной) кислоты  [c.485]

    Хлорид серебра Ag l образуется в виде белого творожистого нерастворимого в воде и кислотах осадка при взаимодействии ионов серебра с хлорид-ионами. На свету хлорид серебра постепенно темнеет, разлагаясь с выделением металлического серебра. Такими же свойствами обладают бромид и иодид серебра, имеющие в отличие от хлорида серебра желтоватый цвет. Напротив, фторид серебра AgF растворим в воде. [c.538]

    Опыт 14. Взаимодейств1Те алюминия с водой. В узкую кювету с водой опускают амальгамированную тонкую алюминиевую проволоку (пробирка слишком тесна дли такого опыта). (В средней школе применение металлическо [)тути и ее солей запрещено, поэтому опыт следует видоизменить.) Так как основной причиной пассивации алюминия в воде является образование на его поверхности плотной пленки гидроксида, в воду вводят реагент, препятствующий этому процессу. Использование кислот и щелочей нежелательно, так как возникает ложное представление об амфотерности алюминия. Чаще берут 5—10 %-ный раствор фторида натрия с добавкой нескольких капель фенолфталеина. На экран проецируют четыре пробирки, две из которых — средние с раствором фторида натрия, а две крайние — с водой. В них также следует добавить индикатор — фенолфталеин. Алюминиевую проволочку сначала обрабатывают 7—10 %-ным раствором щелочи для снятия пленки, а затем промывают последовательно в двух стаканах с водой или раствором фторида натрия и помещают в одну из демонстрируемых пробирок. На экране наблюдают выделение пузырьков газа с поверхности алюминиевой проволоки и поток возникшего при этом раствора щелочи  [c.162]

    Имеются сообщения о синтезе высшего фторида ксенона — ок-сафторида ХеРа, который был выделен в качестве побочного продукта при синтезе гексафторида ксенона. Он устойчив при очень низких температурах и уже при 77 К разлагается на ХеР и Ро. [c.352]

    Галиды. Металлы 1УВ-подгруппы непосредственно взаимодействуют с галогенами с большим выделением теплоты, образованием ЭГ4. В присутствии фторидов ш,елочных металлов происходит образование комплексных фторидов МаЙРв]. [c.368]

    Ненасыщаемость ионной сиязи. Образование димерных молекул и кристаллов. Важнейшей особенностью ионной связи является ее ненасыщаемость. Поле, создаваемое ионом, имеет сферическую симметрию, и все находящиеся в этом поле другие ионы испытывают его действие. В результате оказывается возможным образование из двух молекул МеХ димерной молекулы Ме2Х2, как, например, в парах над кристаллами фторида лития. Молекулы димера имеют структуру плоского ромба, близкого к квадрату. Как показывает несложный расчет, образование из двух катионов и двух анионов димерной молекулы Me Xj сопровождается выделением энергии в 1,3 раза большей, чем при образовании двух молекул МеХ. Таким образом, димеризация сопровождается выигрышем энергии, и при низких температурах димерная форма молекулы устойчивее мономерной. Кроме димерных молекул в парах над галогенидами щелочных металлов могут существовать и более высокие полимерные формы, как, например, молекулы Li з F3 в парах над LiF. Подобная полимеризация является как бы промежуточным звеном от молекулы к кристаллу МеХ. [c.166]

    На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фтористоводородной кислоты и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от pH раствора этот процесс протекает по-разному и записывается различными уравнениями. В щелочной среде преобладает процесс разряда гидроксильных ионов 40Н = Ог -г +2Н2О + 4е , в нейтральной и кислой средах — процесс электрохимического окисления воды 2Н2О = О2 + 4Н Ц-4 ". [c.124]

    В отличие от других галогенов, фтор получают только электролизом расплавленного гидрофторида калия в плавиковой кислоте (жидком фтористом водороде). Из водных растворов Nap, KP или других фторидов нельзя выделить фтор даже элекч тролизом. Выделенный на аноде, он тотчас взаимодействует с во, дой с образованием фтористого водорода, кислорода, а также таких побочных продуктов реакции, как озон и пероксид водоп рода. [c.143]

    Помимо воды, из неорганических соединений в жидком НР хорошо растворимы фториды, нитраты и сульфаты одновалентных металлов (и аммония), хуже — аналогичные соли Мд, Са, 8г и Ва, По рядам Ь1—Сз и Мд—Ва, т, е. по мере усиления металлического характера элемента, растворимость повышается. Щелочные и щелочноземельные соли других галоидов растворяются в НР с выделением соответствующего галоидоводорода. Соли тяжелых металлов в жидком НР, как правило, нерастворимы. Наиболее интересным исключением является Т1Р, растворимость которого исключительно велика (в весовом отношении около 6 1 при 12°С). Практически нерастворимы в жидком НР другие галондоводороды. Концентрированная серная кислота взаимодействует с ним по схеме + ЗНР НзО + НЗОдР + НР . Жидкий фтористый водород является лучшим из всех известных растворителем белков. [c.247]

    Фториды хлора были рассмотрены ранее ( 2 доп. 13—17). Фтористый бром (ВгР) образуется из элементов с выделением тепла (10 ккал/моль). Связь Вг—Р характеризуется длиной (ВгР) = 1,76 А, энергией диссоциации 60 ккал/моль и силовой константой к = 4,0. Молекула ВгР полярна (р. = 1,29). Бромфторид очень нестоек и весьма химически активен (например, взаимодействует с кварцем и золотом). Значительно устойчивее его двойное соединение с пиридином. [c.277]

    Галоидные производные пятивалентных элементов для самого ванадия не характерны (известен только УРз). Для МЬ и Та могут быть получены все возможные пентагалогениды ЭГ5. Они представляют собой легкоплавкие и легколетучие кристаллические вещества. Фториды и хлориды бесцветны, тогда как бромиды и иодиды имеют различные цвета —от желтого до черного. Водой все пентагалогениды разлагаются с выделением осадка соответственно ниобиевой или танталовой кислоты (ЭгОз л Н20). Для фторидов характерна тенденция к комплексообра-зованию, причем большинство производящихся от них комплексных соединений отвечает типу Мг[ЭГ7], где М — одновалентный металл, [c.480]

    Однако длительным действием водорода в момент выделения (цинковая пыль + уксусная кислота) фтор может быть извлечен с восстановлением графитной структуры. Нагревание СР выше 500 °С сопровождается энергичным (вплоть до взрыва) разрушением этого вещества с образованием летучих фторидов углерода (Ср4, СаРв и др.) и выделением сажи. [c.503]

    Аналогичный фосгену фторид — OFj (т. пл. —114, т. кип. —83 °С)—образуется нз СО и Fa с большим выделением тепла (115 ккал/моль). Молекула его полярна (ц = 0,95) и характеризуется параметрами d( O) = 1,17, d( F) = 1,31 А, ZF F = = 108°. При образовании СОВга (т. кип. 65°С с разл.) тепловой эффект очень мал (1 ккал/моль). Оба эти соединения по отношению к воде ведут себя подобно фосгену, но OFa гидролизуется гораздо быстрее его, а СОВга—значительно медленнее. Соответствующий иодид не получен. Известен также к а р б о н и л а з И д — O(Na)j. Он представляет собой летучее и чрезвычайно взрывчатое кристаллическое вещество. [c.514]

    Выпаривание фосфорной кислоты сопровождается выделением в паровую фазу кремнефтористоводородной кислоты. Из паровой фазы, отводимой от узла концентрирования, сначала конденсируют смесь HjO + HaSiFe, а затем воду со следами фторидов. Такая раздельная конденсация возможна потому, что различие давлений паров Н2О и HaSiFe над растворами кремнефтористоводородной кислоты существенно зависит от температуры и концентрации. [c.235]

    Чистый оксид алюминия А12О.-,, свободный от воды, оксидов железа, а также от оксида кремния (IV), получают из боксита и в последние годы из нефелина. Он хорошо растворяется в расплавленном криолите. Добавка фторида кальция способствует поддержке температуры ниже 1000 С, улучшает электрическую проводимость электролита, уменьшает его плотность, что способствует выделению алюминия на дне ванны. [c.182]

    Для многих металлов формой, подлежащей восстановлению, является оксид. Поэтому сульфидные руды для перевода в оксидную форму подвергают обжигу. Водородным восстановлением оксидов получают такие металлы, как Мо, АУ, Не и т. п. Водород — сравнительно мягкий восстановитель. Карботермическое восстановление используют для получения Ре, РЬ, 5п, Си, 2п, N1, Со, Мп и др. Более энергичным восстановителем является металлический алюминий. Алюмотермия широко используется для получения таких металлов, как Сг, Мп, Ре (алюмотермическая сварка), щелочно-земельные металлы. Восстановление оксидов металлов алюминием протекает с большим выделением теплоты, что обусловлено высоким сродством алюминия к кислороду. Еще энергичнее как восстановитель действует магний, который используют для восстановления как оксидов (например, В2О3), так и галогенидов (например, при получении титана и его аналогов). Наконец, самые активные металлы — алюминий, магний, щелочно-земельные и щелочные — получают электролизом расплавов солей (как правило, хлоридов илп фторидов). Катод электролизера можно рассматривать как наиболее энергичный восстановитель — непосредственный донор электронов. [c.44]


Смотреть страницы где упоминается термин Фториды выделение: [c.528]    [c.578]    [c.472]    [c.352]    [c.243]    [c.224]    [c.195]    [c.155]    [c.211]    [c.244]    [c.278]    [c.303]    [c.95]    [c.382]   
Ионообменная технология (1959) -- [ c.260 ]

Ионообменная технология (1959) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Высокочастотный процесс выделения фтора из флюорита в виде фторида водорода

Фтор, фторид водорода, выделение

Фтор, фторид водорода, выделение в газовую фазу



© 2025 chem21.info Реклама на сайте