Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формование химических волокон вискозных волокон

    Сухое формование карбоцепных волокон аналогично формованию ацетатного волокна. При использовании мокрого метода формования карбоцепных волокон в отличие от формования вискозного волокна не происходит химических реакций между компонентами прядильного раствора и осадительной ванны. Струйки прядильного раствора по выходе из фильеры попадают в осадительную ванну, разбавляющую растворитель, в результате полимер коагулирует в форме волокон. Они собираются в нить или жгут и поступают, в соответствующий приемный механизм. Нити обычно наматываются на бобину, жгут штапельного волокна непрерывно поступает в отделочный агрегат, где промывается, отделывается и сушится. [c.464]


    Формование вискозного волокна представляет собой химический процесс. Вискозный раствор, выходящий из отверстий фильеры в виде тон- [c.316]

    Химические волокна, получаемые на основе целлюлозы и ее эфиров, к этой группе волокон относятся упомянутые выше медно-аммиачное, вискозное волокно и ацетатный шелк. Общим в получении всех видов волокон является формование нитей, которое осуществляют, пропуская специально подготовленные вязкие растворы через фильеры — колпачки с большим количеством мельчайших отверстий. [c.189]

    В наибольшем количестве из всех химических волокон вырабатывается вискозное волокно, состоящее из регенерированной целлюлозы. Для получения прядильного раствора целлюлозу превращают в ее водорастворимое производное — ксантогенат, который при формовании волокна разлагается в кислой среде с регенерацией целлюлозы. [c.334]

    Технологическая схема и конструктивное оформление процесса формования капронового волокна имеют много общего с технологией и машинами, применяемыми при получении других химических волокон. Поэтому в прядильном цехе капронового производства необходимо соблюдать те же меры предосторожности, что и в производст вах вискозного и лавсанового волокон. Однако следует отметить, что скорость формования капроновой нити, как и лавсановой, примерно в 10 раз превышает скорость формования вискозной нити, поэтому опасность при обслуживании участка формования производства волокна капрон еще больше возрастает. [c.105]

    Этот способ основан на использовании химических волокон часто сочетаются принципы формования химических волокон и техника спекания, широко применяемая в порошковой металлургии. Описан ряд конкретных приемов получения волокон этим методом. Согласно патенту [37], химические волокна пропитывают водными растворами солей или смесями солей элементов первой, шестой, восьмой группы до достижения сорбции 0,1 — 1 г металла иа 1 моль полимера. Избыток раствора удаляют, а волокно подвергают термической обработке, при которой происходят разложение и удаление полимера. Термическую обработку проводят в условиях, исключающих воспламенение полимера. На этой стадии образуются окислы металлов, которые затем восстанавливают в среде водорода до металла и спекают его. Исходным материалом служит вискозное волокно оно разлагается при температуре 350—500 °С на воздухе при скорости нагревания 100°С/ч. Этим способом получены волокна из Ш, Ад, N1, М1 + Ее. [c.328]


    Волокна, сформованные из расплава, имеют круглый поперечный срез. При формовании волокна из прядильного раствора струйки его, проходя через отверстия фильеры, имеют первоначально круглое поперечное сечение затем, в результате удаления из струйки растворителя за счет испарения (формование орлона и ацетатного волокна по сухому способу) или за счет вымывания (формование вискозного или альгинатного волокна по мокрому способу) происходит нарушение круглой формы поперечного сечения образующегося волокна. Однако, если при фор- мовании по мокрому способу имеет место значительное вытягивание волокна, находящегося в пластичном состоянии, его поперечное сечение получается почти круглым (медно-аммиачное волокно, волокно акрилан). Несомненно, одним из важнейших требований, предъявляемых к химическим волокнам, является однородность всех волоконец нити по форме поперечного сечения. В начале [c.25]

    Примерно в 1933 г. японскими химиками было установлено, что при формовании вискозного волокна в прядильных ваннах, отличающихся от обычных меньшим содержанием кислоты, получаемое волокно обладает высокой извитостью. Этот процесс был хорошо изучен, и в настоящее время большая часть вискозного штапельного волокна в Японии выпускается с извитостью, достигаемой химическим путем. [c.139]

    Следует отметить, что химические волокна, формуемые мокрым способом из раствора — вискозные, медноаммиачные, полиакрилонитрильные и др., — после формования и промывки (до сушки) имеют чрезвычайно развитую внутреннюю поверхность (100—150 м /г волокна), состоящую из многочисленных капиллярных каналов и пор. Часть этих каналов и пор может сообщаться с окружающей средой. Поэтому пе- [c.19]

    Не описывая подробно технологию формования вискозного волокна с точки зрения протекающих при этом физико-химических процессов, рассмотрим здесь только те явления, которые связаны с изменением сорбционных свойств волокна от стадии первичного превращения жидкой струи в студнеобразную нить до получения готового волокна. [c.148]

    Кристаллические сополимеры с 80—95% винилиденхлорида используют для производства жестких изделий и деталей, получаемых прессованием, например различной арматуры, фильер для формования вискозного волокна, корпусов электрических батарей и аккумуляторов, тары и др. Экструзией изготовляют жесткие (непластифицированные) и гибкие (пластифицированные) трубы и пленки. Особый интерес представляют пленки, изготовленные из сополимера винилиденхлорида и винилхлорида (типа сараю>). Эти пленки прозрачны, мало-горючи, обладают химической стойкостью, низкой паро-и газопроницаемостью. Паропроницаемость сополимера с различным содержанием винилиденхлорида составляет (в г/100 м в час) при соотношении винилиденхлорида и винилхлорида 92 8—13, 60 40 — 30, при соотношении 10 90 — 127. [c.104]

    Мокрым — называется способ формования, при котором волокна образуются в результате взаимодействия струек прядильного раствора с веществами, входящими в состав осадительной ванны (раствором, содержащим различные реагенты). В момент формования волокна этим способом происходят физико-химические (высаживание полимера в виде волокон), а в ряде случаев и химические процессы, приводящие к изменению состава полимера (например, образование вискозного волокна). Состав осадительной ванны зависит от химического состава полимера и растворителей, входящих в прядильный раствор. [c.58]

    Путем замедления скорости химической реакции добавлением специальных реагентов в вискозу или в осадительную ванну, можно значительно увеличить толщину оболочки или даже при определенных условиях формования получить волокно, имеющее только структуру оболочки. Этот метод используется при получении высокопрочных вискозных волокон (см. разд. 12.4). [c.307]

    Изменяя условия формования, можно получить волокно различной толщины — от 0,08 до 1,5 текс. Соответственно изменяются и области применения этого волокна. Элементарная нить и штапельное волокно повышенной толщины (1—1,5 текс), которое трудно получить при формовании вискозных волокон, используются в смеси с другими химическими волокнами или с шерстью в ковровой промышленности, тонковолокнистое штапельное волокно или комплексные нити — в том же ассортименте изделий, что и вискозное волокно. [c.459]

    В отличие от других органических и" неорганических оснований, при действии куприаммингидрата на целлюлозу происходит быстрое и полное растворение целлюлозы любой степени полимеризации. При растворении целлюлозы в этом реагенте в особых условиях удается получить концентрированные вязкие растворы, которые используются для получения нитей и пленок. Указанное обстоятельство определило большое практическое значение этих растворов, особенно для получения искусственного волокна. Растворением целлюлозы в медноаммиачном растворе и последующим разложением образовавшегося комплексного соединения целлюлозы при формовании волокна получается один из видов искусственного волокна — так называемое медноаммиачное волокно (см. гл. И). По химическому составу медноаммиачное волокно, так же как и вискозное волокно, представляет собой гидратцеллюлозу. [c.197]


    Долгое время благодаря этому способу формования медио-а.ммиачное волокно выделялось среди других искусственных волокон своей мягкостью, приятным грифом, хорошей носкостью, отсутствием стеклянного блеска, меньшей потерей прочности в мокром состоянии и т. п. Однако по мере совершенствования методов производства других волокон, и в частности после освоения выпуска тонковолокнистой вискозной текстильной нити, медноаммиачное волокно утратило свои преимущества. Более того, в настоящее время медноаммиачное волокно имеет наименьшую прочность (15 ркм) из всех химических волокон. Согласно литературным данным, ведущиеся научно-исследовательские работы по упрочнению этого волокна увенчались успе--хом, и в последнее время получено медноаммиачное волокно прочностью 40 ркм. [c.331]

    Разработка непрерывной схемы получения химических волокон имеет особое значение для производства вискозного волокна, которое до настоящего времени характеризуется многостадийностью технологического процесса. Для его усовершенствования необходимо создание методов непрерывного приготовления вискозного раствора и подготовки его к формованию (непрерывные фильтрация и обезвоздушивание) и, наконец, методов непрерывного формования и отделки вискозного шелка. [c.691]

    В зависимости от способа формовання химические волокна содержат различные примеси вискозные волокна — серную кислоту, соли, серу медноаммиачные волокна — соли меди, сульфат аммония капроновые волокна — низкомолекулярные соединения (главным образом, капролактам), по-лиакрйлонитрильные волокна — роданистые соли или остатки растворителя. Во всех случаях эти примеси должны быть тщательно удалены, так как они ухудшают физико-механические свойства или внешний вид готового во- [c.260]

    Это соединение рекомендуют вводить в вискозный раствор в количестве 20—25% от массы а-целлюлозы. При последующем формовании получается негорючее вискозное волокно. Однако этот антипирен, как и большинство других антипиренов, химически не свя- [c.173]

    Вискозное волокно представляет искусственное химическое волокно из гидратцеллюлозы, то есть одной из структурных модификаций целлюлозы (СбНю05) , которая регенерируется в процессе формования волокна из раствора. Гидратцеллюлоза [c.412]

    Формование волокна. Формование вискозного волокна, как принято в производстве химических волокон, называют прядением, а вискозу, соответственно, - прядильным раствором. Формование - важнейшая стадия технологического процесса, условия которой определяют структуру и свойства волокна. Формование осуществляют мокрым способом, т.е. прядильный раствор продавливают через фильеры (нитеобразователи) с отверстиями диаметром 0,04...0,10 мм в осадительную ванну -раствор, содержащий серную кислоту и ее соли. Серная кислота необходима для разложения ксантогената с получением регенерированной целлюлозы. Соли (сульфаты натрия, цинка и др.) регулируют процесс коагуляции. Состав ванны зависит от вида формуемого волокна. [c.593]

    Так, одинаковые с точки зрения технологии способы формования вискозных и полиакрилонитрильных волокон оказываются весьма различными с точки зрения происходящих при формовании процессов. В самом деле, механизм образования волокна из вискозных растворов связан как с химическим процессом регенерации целлюлозы из ее эфиров дитиокарбоновой кислоты, так называемого ксантогената целлюлозы, так и с выделением твердой фазы из раствора в виде гидратцеллюлозного волокна (что является уже физико-химическим процессом). Образование же полиакрилонитриль-ного (ПАН) волокна основано только на концентрационном пересыщении раствора полимера и осаждении его в виде волокна за счет разбавления раствора нерастворителем из осадительной ванны. Это уже типично физико-химический процесс образования волокна без каких-либо химических реакций. [c.238]

    Химический метод формования используется при получении гнд-ратцеллюлозных и некоторых синтетических волокон, например, на основе полиимидазолов. Их получают мокрым способом из концентрированных растворов промежуточных веществ (полупродуктов), которые при взаимодействии с компонентами осадительной ванны в процессе формования частично или полностью переходят в нерастворимое состояние, чем и определяется химический состав будущего волокна. Например, в случае формования вискозного волокна в растворе находится ксантогенат целлюлозы, который под действием серной кислоты осадительной ванны переходит в гид-ратцеллюлозу по схеме (см. стр. 32). [c.239]

    Подбирая соответственно время и температуру процесса мерсеризации или выдерживая щелочную целлюлозу при постоянной температуре (25—30°) в течение 15—30 часов (предварительное созревание), получают целлюлозу с заданной длиной цепи (степени полимеризации). Щелочная целлюлоза обрабатывается сероуглеродом образуется химическое соединение (ксантогенат целлюлозы), которое при растворении в разбавленной щелочи образует вискозный раствор. Вискозный раствор фильтруют и после выдержки продавливают через отверстия фильеры. Волокно формуется из вискозного раствора при его поступлении в ванну, в которой содержится раствор серной кислоты и ее солей. При взаимодействии вискозного раствора с серной кислотой происходит регенерация целлюлозы. Образовавшееся вискозное волокно отмывается от избытка кислоты и подвергается отделочным операциям—удалению серы, отбелке, повышению мягкости. Пленка из вискозы—целлофан—получается путем продавливанпя прядильного раствора через узкую щель фильеры в осадительную ванну, где и происходит образование пленки. Процесс формования пленки, все отделочные операции и сушка пленки проводятся на одном агрегате (пленочная машина). [c.21]

    Этот эфир обладает способностью растворяться в щелочах такой раствор называется вискозой (от лат. viskozus — клей). Кислоты разлагают его с образованием регенерированной целлюлозы. При продавливании вискозы в кислоту через фильеры образуются нити волокна, которое называется вискозным волокном или вискозным шелком. Хотя это волокно по химическому составу является не чем иным, как целлюлозой, оно обладает большей прочностью и теплостойкостью по сравнению с исходной целлюлозой, что объясняется параллельной ориентацией молекул при формовании и вытяжке волокна во время его образования. Вискозное волокно наиболее распространено среди химических волокон (составляет —75% от общего производства химических волокон) главным образом вследствие дешевизны. Если вискозу продавливать в кис.тоту через тонкие щели, образуется целлофан — дешевый упаковочный материал. [c.230]

    Значительное применение в производстве вискозного волокна находит газовая сера, получаемая в сероочистных цехах коксохимических заводов. Отдельные сорта каменноугольного пека используются в производстве композиций для асфальтопековых пластмасс. Заявлена потребность химической промышленности на сотни тонн аценафтена для получения аценафтилена, являющегося компонентом сополимерных пластиков и исходным мономером для синтеза ионообменных смол. В ближайшее время должен найти широкое применение фенантрен для синтеза дифеновой кислоты как заменителя фталевого ангидрида. Весьма интересны винилнафталины, получаемые из метилнафтали-нов. Пластмассы, приготовленные на их основе, обладают хорошими механическими свойствами и термической устойчивостью. На основе карбазола возможна организация производства ви-нилкарбазола и инденкарбазольных смол. Поливинилкарбазол напоминает полистирол способностью, к формованию, химической стойкостью и хорошими диэлектрическими свойствами. Из поливинилкарбазола и полиэтилена получают с помощью гамма-излучения привитые сополимеры, дающие теплостойкие и достаточно эластичные диэлектрики. [c.44]

    Основной процесс производства каждого вида химического волокна расчленяется на технологические операции. Например, в производстве вискозной текстильной нити технологическими операциями являются мерсеризация целлюлозы, измельчение щелочной целлюлозы, предсозревание и ксантогенирование щелочной целлюлозы, растворение ксантогената целлюлозы (получение вискозы), подготовка вискозы к формованию волокна (смешивание, созревание, фильтрация, обезвоздушивание), формование, отделка, сушка, перемотка, сортировка и упаковка готовой нити. [c.86]

    Этот метод, как указывалось ранее, основан на наполнении химических волокон карбидообразующими элементами и последующей термической обработке. Карбидообразующий элемент должен находиться в волокнистом материале либо в виде окисла, либо в виде соединения, способного превращаться в окисел при низкотемпературной обработке. При последующей высокотемпературной обработке происходит науглероживание окисла за счет углерода волокна до образования карбида. Возможны два способа введения карбндообразующих элементов в волокно. По одному из них карбидообразующие соединения вводятся в прядильный раствор при формовании получают волокно с равномерно распределенными в нем добавками. Применение этого метода рассмотрено выше на примере получения 51С-волокна и смешанного углерод-кремне-земного волокна. По второму варианту готовое химическое волокно пропитывается растворами карбидообразующих элементов, обычно водны.мн растворами солей, хотя, конечно, не исключено использование органических растворителей. Волокно должно обладать сродствол к растворителю с тем, чтобы было достаточно сорбированной соли для последующего получения карбида. В случае применения водных растворов солей с pH ие менее 7 наиболее приемлемым является вискозное волокно. При использовании в качестве исходного материала полиакрилонитрильного или углеродного волокон можно для пропитки применять растворы солей или расплавы солей с кислой реакцией. [c.346]

    Результаты исследований, проведенных на опытной установке ВНИИВ, были использованы при проектировании опытного производства, которое, однако, отличалось от этой установки не только по мощности, но и по типу основного оборудования и некоторым технологическим параметрам процесса. В химическом отделении опытного производства использовалось типовое технологическое оборудование для получения вискозного штапельного волокна в прядильно-отделочном отделении — оригинальная прядильная машина, выполненная в соответствии с разработанной во ВНИИВ схемой формования нолиноэного волокна. Для резки, отгонки сероуглерода, отделки, сушки и упаковки полинозного волокна используется стандартное оборудование. [c.134]

    Формование волокна. Поливиниловые волокна формуют яа обычных прядильных машинах вертикального типа, на горизонтальных прядильных столах или в специальных прядильных трубках. Насосик, свечевой фильтр и сама фильера мало отличаются от применяемых при формовании других химических волокон мокрым способом. Поэтому и соответствующие расчеты фильерной вытяжки, подачи прядильного раствора насосиком п т. п. аналогичны расчетам, производимым в вискозном и других производствах. Расчеты, связанные с циркуляцией осадительной ваппы, и балансы растворителя, а также расчеты по определению количества испаренных летучих растворителей с поверхности прядильных желобов имеют существенные отличия и поэтому приводятся в настоящей главе. [c.162]

    Вопрос о целесообразности двукратной обработки вискозных текстильных нитей — авиважной обработки мокрых нитей после отделки, но до сушки, н замасливания сухой нити безводными композициями во время крутки или перемотки — неясен. Условия текстильной переработки вискозных нитей постепенно изменяются необходимость в отдельных операциях крутки и перемотки постепенно отпадает, так как вискозные нпти все чаще выпускаются на заводах химического волокна в готовых паковках с машин непрерывного формования и отделки, а также в куличах или на сновальных валиках. При этом операция замасливания нитей не нужна, но состав авиважной композиции должен быть несколько изменен, а концентрация веществ на волокне увеличена. [c.65]

    Указанное обстоятельство является одной из существенных причин, определивших быстрый технический прогресс промышленности химических волокон в последние годы. Чтобы характеризовать это направление развития промышленности, достаточно указать на производство медноаммиачного волокна по вискозному способу (щелочной способ формования), вискозного волокна по медноаммиачному способу (формование волокна из высоковязких растворов в воронке с сильной вытяжкой), триацетатного щелка и волокна хлорин по мокрому способу, полиакрилонит- рильного волокна по ацетатному способу. Можно указать также на использование методов непрерывного формования и отделки, разработанных для вискозных волокон, в производстве медноаммиачного и капронового волокон, методов сокращенной отделки вискозного шелка и упрочнения искусственных волокон — в производстве синтетических волокон. [c.11]

    Вискозное волокно — один из первых видов химических волокон, вырабатываемых в промышленных масштабах. В 1891 г. английские исследователи Кросс, Бивен и Бидль, изучавшие условия получения и свойства различных производных целлюлозы, нашли, что при действии сероуглерода на целлюлозу, предварительно обработанную концентрированным раствором щелочи, получается новое производное целлюлозы — ксантогенат целлюлозы, растворимый в разбавленном растворе щелочи. В 1893 г. этими исследователями был взят патент (германский патент 70999) на получение вискозы растворением ксантогената целлюлозы в щелочи. После того, как в 1898 г. Стирн впервые получил волокно пропусканием вискозы в раствор аммонийных солей (германский патент 108511), английская фирма Курто приступила к организации промышленного производства вискозной текстильной нити. Решение этой задачи было значительно облегчено тем, что в 1905 г. Мюллер показал возможность получения волокна, обладающего сравнительно удовлетворительными свойствами, формованием его в ванн , содержащей серную кислоту и ее соль (в частности, сульфат натрия). [c.195]

    Величина кристаллитов и их соотношение с величиной аморфных участков в агрегатах макромолекул зависит как от условий формования, так и от условий получения вискозы и подготовки ее к формованию (в частности, от структуры исходной целлюлозы, условий растворения ксантогената, степени полимеризации и концентрации ксантогената целлюлозы в растворе). Взаимное расположение кристаллитов и агрегатов макромолекул в волокне и степень их ориентации зависят только от условий формования и вытягивания волокна. Поэтому при мокром способе формования вообще, и в особенности при формовании вискозного волокна, при котором наряду с физико-химическими происходят и химические процессы, основное значение для получения структурно однородного волокна имеет правильный выбор условий формования. [c.382]

    Понижение степени диссоциации кислоты может быть достигнуто различными путями. Наиболее целесообразно введе ние в раствор одноименных анионов. При применении в качестве основного компонента осадительной ванны серной кислоты понижение степени ее диссоциации и тем самым замедле ние скорости химической реакции и повышение однородности структуры и качества волокна достигаются введением в состав занны сульфатов. Добавление сульфатов в ванну повышает механические свойства и мягкость волокна. Поэтому ванна, при- меняемая при формовании вискозного волокна, должна содер жать минимум два компонента (ке считая воды) —серную кис лоту и сульфат. [c.389]

    Путем регу 1ир0вания физической структуры полимера (изменением соотношения между кристаллической и аморфной фракциями, ориентации элементов структуры вдоль оси волокна, и др.) можно в широких пределах изменять комплекс фи-зико-механических свойств химических волокон. Современные методы формования вискозного волокна и приготовления прядильного раствора позволяют заметно регулировать структуру полимера и тем самым получать волокна с желаемыми свойствами. Используя указанные возможности, за последние годы удалось получить ряд новых гидратцеллюлозных волокон. Среди них особый интерес представляют высокопрочное вискозное кордное (ВОЛОКНО и так называемые полинозные или высоко--модульные волокна. По своим физико-механическим свойствам полинозные штапельные волокна приближаются к хлопку (хлопкоподобные).  [c.305]


Смотреть страницы где упоминается термин Формование химических волокон вискозных волокон: [c.108]    [c.166]    [c.625]    [c.321]    [c.288]    [c.305]    [c.10]    [c.229]    [c.284]   
Физико-химические основы технологии химических волокон (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вискозное волокно

Вискозное волокно в вискозном волокне

Вискозное волокно формование

Волокна химические

Мокрое формование химических волокон вискозного

Формование волокна

Формование химических волокон вискозного

Формование химических волокон кордной вискозной нити

Формование химических волокон текстильной вискозной нити



© 2025 chem21.info Реклама на сайте