Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий металлоорганические соединени

    Основная часть металлоорганических соединений концентрируется также в смолисто-асфальтеновых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть никеля присутствует и в дистиллятах. Содержание ванадия в ТНО тем больше, чем выше содержание серы, а никеля — чем выше содер — жание азота. В ТНО малосернистых нефтей содержание никеля выше, чем ванадия. Установлено, что основное количество ванадия и [c.37]


    При сжигании остаточных топлив кроме снижения образующихся отложений большое значение имеет изменение их состава, поскольку в этих отложениях присутствуют вещества, вызывающие коррозию стали. В состав этих веществ входят, в частности, ванадий и натрий первый —в основном в виде растворимых в нефти металлоорганических соединений типа порфириновых комплексов, а второй — в виде галогенидов, сульфатов и др. При термическом разложении и окислении этих сое- [c.177]

    Несмотря на то что некоторые металлоорганические соединения растворимы в пропане (ограниченно), они проявляют тенденцию к накоплению в асфальтовой фракции. Например, ванадий (0,02% вес в нефти) присутствует во всех экстрактах, но наиболь- [c.46]

    В нефтепереработке металлоорганические соединения доставляют неприятности, не пропорциональные их малому содержанию в нефти. Незначительное количество железа, меди и особенно ванадия или никеля в сырье каталитического крекинга снижает активность катализатора, в результате чего возрастает газо-и коксообразование и снижается выход бензина [155]. [c.47]

    Благодаря перечисленным мероприятиям и применению глубокого вакуума получаемый основной продукт — тяжелый вакуумный газойль (с концом кипения 550° С) прозрачен, имеет низкую коксуемость и ничтожное содержание металлоорганических соединений ванадия, никеля и железа. [c.245]

    Содержащиеся в различных количествах в разных нефтях металлы (ванадий и никель) и асфальто-смолистые отравляющие катализаторы вещества концентрируются в остатках от перегонки нефти. Изучение металлоорганических соединений, асфальто-смолистых веществ, продолжительности пробегов промышленных установок и отработанных катализаторов позволило модифицировать катализатор и технологическое оформление процесса гидрообессеривания нефтяных остатков. Оказалось, что в случае содержания суммы металлов в исходном остатке менее 25 млн-1 процесс можно проводить с высокими технико-экономическими показателями в реакторе со стационарным слоем катализатора одного вида, характеризующегося высокой гидрообессеривающей активностью и небольшой металлоемкостью. При содержании металлов 25-50 млн 1 более эффективно использование системы из двух видов катализаторов, причем первый должен обладать высокой металлоемкостью и невысокой гидрообессеривающей активностью. Другой катализатор должен быть высокоактивным в реакции гидрообессеривания. Последние достижения в области катализаторов и технологического оформления процесса позволяют получать из тяжелых нефтяных остатков низкосернистые котельные топлива, вырабатывать сырье для каталитического крекинга и производства низкосернистого кокса, решать задачу безотходной, экологически чистой переработки самых тяжелых нефтей с высоким содержанием металлов и асфальтенов. Однако для этого требуется резко улучшить технико-экономические показатели по сравнению с каталитическим крекингом понизить на целый порядок себестои- [c.194]


    Вторая причина многообразия структурных форм высокомолекулярных соединений нефти заключается в том, что с ростом молекулярного веса увеличивается число элементов, участвующих в построении молекул. Так, в углеводородной части масляных фракций из сернистых нефтей уже содержатся значительные примеси сернистых соединений, но практически отсутствуют кислородные соединения в составе смол наряду с серой уже находятся значительные количества кислорода, а нередко и азота наконец, в асфальтенах, кроме серы и кислорода, сконцентрирована основная масса азота, ванадия, никеля [30, 31, 32] и некоторых других микроэлементов. Таким образом, с увеличением молекулярного веса фракций нефти наблюдается постепенный переход от компонентов чисто углеводородного характера к смесям, состоящим из углеводородов и гетеро-органических соединений. Структура и состав этих соединений непрерывно усложняются в результате увеличения числа гетероатомов, входящих в Молекулу. Однако углеводородный скелет по-прежнему остается несущим каркасом молекул. Поэтому огромное разнообразие возможных структурных форм высокомолекулярных соединений нефти в случае смол и асфальтенов, в отличие от углеводородов, обусловлено не только изомерией углеродного скелета молекулы, но и изомерией, вызванной наличием в молекулах атомов серы, кислорода, азота и других элементов. В наиболее высокомолекулярной смолисто-асфальтеновой части нефтей уже встречаются заметные количества металлоорганических соединений, что еще более увеличивает качественное разнообразие структурных форм этих соединений. [c.22]

    Весьма вредное влияние на катализаторы крекинга оказывают тяжелые металлы (особенно — ванадий и никель). Эти металлы содержатся в нефтях в виде металлоорганических соединений. Концентрация металлоорганических соединений повышается по мере утяжеления фракций. В вакуумных дистиллятах (к. к. 500°С) большинства западно-сибирских нефтей содержание никеля составляет 0,25-0,50 г/т, ванадия — 0,4-0,55 г/т. Для отдельных нефтей эти значения мог>т достигать 0,6-1,0 г/т. При повышении конца кипения вакуумного дистиллята от 500 до 540°С концентрация указанных металлов возрастает в 1,5-2,0 раза (рис. 10). [c.112]

    Основными химическими элементами, составляющими нефть, являются углерод (С) и водород (Н), содержащиеся в различных нефтях в количествах (% мае.) 82-87 и 11-15 соответственно. Оставшуюся долю составляют сера (8), азот (Ы), кислород (О) и металлы (ванадий, никель, железо, кальций, натрий, калий, медь и др.), находящиеся в нефтях в виде сернистых, азотистых, кислородсодержащих и металлоорганических соединений. Таким образом, по своему составу нефть представляет собой очень сложную смесь органических веществ, преимущественно жидких, в которой растворены (или находятся в коллоидном состоянии) твердые органические соединения и сопутствующие нефти газообразные углеводороды (попутный газ). [c.14]

    Сернистые соединения в общем влияют на синтетические катализаторы незначительно, однако сырье, подобное арланскому, как правило, характеризуется повышенной смолистостью и содержит азотистые соединения и тяжелые металлы (ванадий, кобальт, никель). Эти металлы содержатся в нефтях в виде металлоорганических соединений и в основном концентрируются в остатках, однако попадают и в вакуумные газойли. В вакуумных, газойлях некоторых сернистых нефтей содержание ванадия (0,6-=-1,0) 10" %, а содержание никеля (0,3- -0,6) 10 %. В процессе крекинга эти, казалось бы, ничтожные количества металлов отлагаются на катализаторе, в результате чего его активность и избирательность снижаются. Так, никель ускоряет образование кокса и способствует реакциям дегидрирования с обогащением газа водородом. Избыточное коксообразование вызывают и другие тяжелые металлы. [c.142]

    Содержание в нефти металлоорганических соединений со связью углерод-металл не доказано, хотя вероятность их обнаружения достаточно высока. Наиболее хорощо изученной формой существования ванадия являются ванадилпорфирины. Концентрация последних прямо пропорциональна содержанию в них серы. [c.91]

    О четкости разделения мазута обычно судят по фракционному составу и цвету вакуумного газойля. Последний показатель косвенно характеризует содержание смолисто-асфальтеновых веществ, то есть коксуемость и содержание металлов. Металлы, особенно никель и ванадий, оказывают отрицательное влияние на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Поэтому при эксплуатации промышленных установок ВТ исключительно важно уменьшить унос жидкости (гудрона) в концентрационную секцию вакуумной колонны в виде брызг, пены, тумана и т.д. В этой связи вакуумные колонны по топливному варианту имеют при небольшом числе тарелок (или невысоком слое насадки) развитую питательную секцию отбойники из сеток и промывные тарелки, где организуется рециркуляция затемненного продукта. Для предотвращения попадания металлоорганических соединений в вакуумный газойль иногда вводят в сырье в небольших количествах антипенную присадку типа силоксан. [c.222]


    Основная часть металлоорганических соединений концентрируется также в смолисто-асфальтеновых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть ни- [c.364]

    Металлоорганические соединения, содержащиеся преимущественно в высококипящих и особенно остаточных фракциях нефти, относятся к необратимо дезактивирующим компонентам сырья крекинга. Блокируя активные центры катализатора, они отрицательно влияют не только на его активность, но и на селективность. Так, по мере увеличения содержания никеля и ванадия, являющихся, как известно, дегидрирующими металлами, интенсивно возрастает в продуктах крекинга выход водорода и сухих газов, а выход бензина существенно снижается. [c.443]

    Кислородные соединения при гидрокрекинге претерпевают практически полное превращение с образованием соответствующего углеводорода и воды. Удаление металлов, содержащихся в сырье в качестве металлоорганических соединений, происходит также полностью, однако при этом они отлагаются на поверхности катализатора, в результате чего необратимо падает активность катализатора. Полнота удаления ванадия при гидрокрекинге превышает 95%, а натрия — в два раза ниже. Изложенные основные химические превращения характерны для всех известных модификаций процесса гидрокрекинга. [c.89]

    Пятая группа. Здесь будут рассмотрены соединения мышьяка, сурьмы и висмута. Соединения подгруппы ванадия (V, МЬ, Та) простых металлоорганических соединений не образуют. [c.588]

    Основные причины дезактивации катализаторов крекинга, риформинга и гидроочистки - отложение кокса на поверхности и в порах катализатора. При каталитическом крекинге и гидроочистке нефтяного сырья, содержащего ионы натрия, никеля, ванадия, кремния, свинца, мышьяка и др.), дополнительно происходит адсорбция ва поверхности катализатора металлоорганических соединений. Эти вещества трудно удаляются (или не удаляются) при регенерации и отрицательно влияют на процесс регенерации. Отравляющее действие металлов сходно между собой и сводится к уменьшению удельной поверхности и объема пор катализатора. [c.655]

    Основная часть металлоорганических соединений концентрируется также в смолисто-асфальтеновых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть никеля присутствует и в дистиллятах. Содержание ванадия в ТНО тем больше, чем выше содержание азота. В ТНО малосернистых нефтей содержание [c.171]

    При переработке нефтяных остатков большую опасность для катализаторов представляют содержащиеся в сырье металлы в виде металлоорганических соединений. Отложение металлов на катализаторах практически неизбежно. В первую очередь отрицательное влияние на активность катализатора гидрокрекинга оказывает сумма металлов никеля и ванадия (№ + V). Проблема замедления процесса отравления катализаторов гидрокрекинга решается разными способами. При гидрокрекинге вакуумного газойля жесткие требования предъявляются к вакуумной перегонке мазута (остатка атмосферной перегонки), при которой ограничивается содержание металлов (N1 + V). При гидрокрекинге тя- [c.820]

    Олефины (этилен, пропилен, бутен-1, пентен-1, З-метилбутен-1 или 4-метилпентен-1) Соответствующие полимеры Аддукт тетрахлорида ванадия с ацетилацетона-том железа и металлоорганическим соединением элемента 1—III группы в инертном растворителе, 1 — 100 бар, 0—200° С [420] [c.608]

    Металлы в нефти находятся, очевидно, в виде металлоорганических соединений и комплексов (ванадия, никеля, железа, алюминия, цинка и т. д.). Происхождение их точно неизвестно. Некоторые исследователи считают их первичными, а некоторые — вторичными продуктами [142]. [c.60]

    В составе золы найдены многие металлы и металлоиды, которые переходят в топливо из нефти при переработке (натрий, магний, кальций, титан, ванадий, никель и др.), в процессе хранения и перекачки, применения (медь, железо, цинк, алюминий) и вследствие загрязнения топлива пылью из атмосферы (кремний, кальций, алюминий и др.) (141). Таким образом, металлоорганические соединения в топливе оказывают значительное влияние на возникновение и формирование второй фазы в топливах. [c.162]

    Большую часть металлоорганических соединений мазута или гудрона можно осадить вместе с асфальтенами при помощи пропана или аналогичного растворителя. Например, Сакс (Saks) [151] установил, что удаление асфальтенов с помощью м-пентана снижало содержание ванадия в некоторых остаточных топливах на 83—95%. Наблюдалось также заметное снижение количества железа и никеля. [c.46]

    Несмотря на утверждение о том, что применяемые в настоящее время методы эффективны для крекинга не только дистиллятов, но и нефтяных остатков и экстрактов, получаемых при очистке дистиллятов избирательными растворителями [236—239], тание остатки применяются в качестве сырья довольно редко. Они образуют слишком большие отложения кокса на катализаторе, не дают продуктов хорошего качества и способствуют быстрому стареник> катализатора вследствие отравления его металлоорганическими соединениями (главным образом, соединениями ванадия), которые часто содержатся в асфальтовом остатке. [c.323]

    Кислородные соединения в ТНО входят в основном в состав асфальтенов и смол. Основная масса металлоорганических соединений концентрируется также в асфальто-смолистых компонентах ТНО. В масляной части ванадий практически полностью отсутствует, а часть никеля присутствует и в дистиллятах. Содержание ванадия в ТНО тем больще, чем выще содержание серы, а никеля - чем выше содержание азота. В ТНО малосернистых нефтей содержание никеля вьш1е, чем ванадия. Установлено, что основное количество ванадия и никеля в нефтяных остатках представлено в виде металлоорганических соединений непорфиринового характера (например 62 и 60% соответственно в мазуте ромашкинской нефти), а меньшая их часть - в виде метал-лопорфириновых комплексов (27 и 33% соответственно). [c.59]

    В процессе изучения иракской нефти исследователи [195] пришли к заключению, что очень незначительная часть ванадия находится в форме ванадиево-парфириновых комплексов практически весь ванадий находится в асфальтенах. Около двух третей от всего количества ванадия и никеля относят к асфальтенам и в работе [176] на основании изучения металлоорганических соединений нефтей Второго Баку. [c.139]

    Особый научный интерес представляет изучение свойств и реакций металлоорганических соединений, в которых атомы ванадия и никеля связаны с углеродным каркасом молекул валентными связями и в виде комплексов, с целью нахождения путей деметаллизации смол и асфальтенов. Большой практический интерес представляют систематические исследования глубины и направления химических изменений состава и структуры смол при нагревании их, с учетом таких факторов, как продолжительность и температура, давление в среде различных газов (Н2, N2, О2, NHз, НгЗ и др.), а также изучение численных значений пороговых температур и критических концентраций смол в растворах на процесс их деструкции и асфальтенообразования. Детальное исследование химических реакций и процессов высокотемпературных превращений их представляет большую актуальность при выборе рациональных и экономичных направлений практических путей их технического использования (производство кокса, пеков, лаков, сажи и других продуктов). [c.261]

    Известно, что ванадий и другие металлы, входящие в состав металлоорганических соединений нефти, концентрируются в основном в асфальтенах. При удалении основной массы асфальтенов из гудрона арланской нефти содержание металлов в нем снижается. Из такого деасфальтированного гудрона можно получить кокс со сниженным содержанием ванадия и других металлов. С этой целью в качестве сырья коксования был испытан деасфальтизат, получаемый в процессе Добен , разработанном в БашНИИ НП. [c.156]

    В процессах полимеризации углеподородов наиболее широкое распространение в качестве катализаторов получили серная и фосфорная кислоты, галогениды металлов и неметаллов (хлориды алюминия и цинка, фторид бора), оксиды металлов (ванадия, цинка, молибдена), металлоорганические соединения (триэтклалюминий, триизобутилалю-миний) и др. Серная кислота, используемая в качестве катализатора, должна иметь концентрацию 63- 72%. [c.40]

    Другим направлением глубокой переработки нефти является разработка специальных процессов и катализаторов гидродеметаллизации, суть которой состоит в гидрогенолизе металлоорганических соединений. При этом на поверхности катализаторов откладывается металл (ванадий, никель, железо), а органическая часть переходит в продукты гидрокрекинга. [c.213]

    Значительно более сложен процесс гидрообессеривания остаточного нефтяного сырья. Известно, что в прямогонных остатках концентрируются помимо сернистых соединений, переходящих в остаток в количестве 60-80% от суммарного содержания серы в нефти, и другие каталитические яды и дезактиваторы - смолисто-асфальтеновые, азотсодержащие компоненты, а главное металлоорганические соединения ванадия, никеля и др. При этих условиях очень трудно сохранять постоянную активность катализатора в течение длительного времени и обеспечивать эффективный контакт сырья, водорода и катализатора. Если на основе сернистых остатков получают котельное топливо с умеренным содержанием серы (например, 1 мае. %), происходит частичное разложение сырья с образованием 1 мае. % газа, 7-8 мае. % бензинокеросиновой фракции и 90 мае. % котельного топлива. [c.68]

    Органическая часть сернокислотных отходов состоит из углеводородов, эфиров, спиртов, альдегидов, кетонов сульфо- и карбоновых кислот, сульфонов и других сернистых соединений, солей азотистых оснований, смол, асфальтенов, карбенов и карбоидов [5]. В состав некоторых видов сернокислотных отходов входят также различные металлы (медь, никель, ванадий, железо и др.) в виде продуктов коррозии и металлоорганических соединений. [c.40]

    Влияние металлоорганических соединений на обессеривание нефтяного кокса. Ранее нами рассмотрены вероятные варианты реагирования сернистых соедипеиий с зольными компонентами с образованием сульфатов, сульфидов и др., влияющих существенно на процесс обессеривания. Все эти реакции возможны в условиях ирокаливання и обессеривания нефтяных коксов также в среде активных составляющих дымовых газов. Поэтому представляет интерес обобщить экспериментальный материал по превращениям в процессе прокаливаиия соединений железа, кремния, кальция, натрия, ванадия и алюминия, распространенных в материнской золе, а также окислов, которые могут попасть в нефтяной кокс при разрушении прокалочных иечей (окислы хрома, магния и др.). [c.225]

    Концентраты асфальто-смолиетых веществ, получаемые при экстракции изопропиловым или н-бутиловым спиртами (кратность спирта к сырью 4 ) отличаются повышенным содержанием металлоорганических соединений. Имеется определенный мировой опыт по способам извлечения ванадия. На первой установке, пос фоенной в Канаде, 265 получают из венесуэльской нефти (130 г/т ванадия) в порошковом коксе содержится 4000 г/т ванадия в летучей золе — 84 ООО г/т. Металлы экстрагируют серной кислотой (pH = = 0,2-0,3). Раствор отфильтровывают, низшие оксиды ванадия доокисляют перхлоратом натрия и высаживают аммиаком при температуре 82-98 °С и pH = 1,7-2,1. Степень извлечения ванадия составлят 90 %. [c.146]

    В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме азотистых оснований, асфальтены и прежде всего содержащиеся в них металлы, такие как никель и ванадий. По згому гидрокрекинг сырья, содержащего значительное количество гетеро- и металлоорганических соединений, вынужденно проводят в две и более ступеней. На первой ступени в основном проходит гидроочистка и неглубокий гидрокрекинг полициклических ароматических углеводородов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени облагороженное сырье перерабатывают на катализаторе с высокой кислотной и умеренной гидрирующей активностью. [c.327]

    Компонентами катализатора Циглера являются а) металлоорганическое соединение металлов II или III группы, особенно алкила-ты алюминия, цинка или магния, или гидриды щелочных металлов, алкилгидриды металлов типа Rn М — X, б) соль, например галогенид, алкоголят или ацетилацетоиат металла IV, V и VI групп, особенно хрома, молибдена, тория, ванадия или циркония. По-видимому, между двумя компонентами происходит реакцня, в которой металл компонента [б)] частично алкилируется и восстанавливается, например в случае титана — до степени окисления 3 или ниже. [c.436]

    Реакции гетероциклических соединений. Сырье, направляемое на гидрогенизационное обессеривание, часто содержит, помимо сернистых, также азотистые, кислородные и металлоорганические соединения. В условиях, применяемых при гидрогенизационном обессеривании, гетеро-атомы всех этих соединений в значительной степени удаляются., Азотистые соединения содержатся в разных видах сырья в форме пириди-нов и хинолинов (азотистые основания) и карбазолов, индолов и пирролов (неосновные или нейтральные азотистые соединения). Кислород может присутствовать в виде ранее образовавшихся соединений, как фенолы, жирные и нафтеновые кислоты, и в виде продуктов окисления, например гидроперекисей. Из металлов могут присутствовать мышьяк, никель и ванадий. Как правило, азот удаляется при гидрогенизации в виде аммиака, кислород — в виде воды метад.т1Ы обычно образуют отложения на поверхности катализатора. [c.384]

    Соли и механические примеси. При коксовании соли механичеркие примеси, содержащиеся в сырье, переходят в кокс и повышают его зольность. Соли и механические примеси попадают в нефть с пластовыми водами при ее добыче в виде растворимых и нерастворимых (песка и глины) веществ. Кроме того, механические примеси попадают в сырье коксования при защелачивании нефтей. Одним из источников образования золы в коксе являются содержащиеся в сырье коксования металлоорганические соединения, которые входят в состав асфаль-то-смолистых веществ. Высокое содержание золы ограничивает нрименевие кокса. Например, ванадия в коксе при получении алюминия должно быть не более 0,015%, так как ванадий ухудшает электропроводность алюминия. [c.19]

    При крекинге тяжелого сырья имеют важное значение пе только рассмотренные выше вопросы, относящиеся к селективности, но и проблемы, связанные с отравлением катализатора металлическими ядами. Последние присутствуют в тяжелых фракциях в виде металлоорганических соединений, которые нри крекинге распадаются, а металлы отлагаются па поверхности катализатора. Влияние никеля, ванадия и железа — основных металлических компонентов газойлевых фракций — проявляется в увеличении выхода кокса и газообразных продуктов, при соответствующем снижении выхода бензина. Активность указанных металлов убывает в ряду Ni, Fe. Рассматриваемое явление было обнаружено еще до появления цеолитных катализаторов и вовлечения в переработку тяжелого сырья [205—210]. Цеолитные катализаторы имеют лучшую сопротивляемость против отравления металлами, чем аморфные алюмосиликаты [207—214]. Зависимость интенсивности нежелательных побочных реакций от количества металла на катализаторе нелинейна [212], показатель степени равен 0,5 [215]. Синергический эффект между различными металлами отсутствует. Это, но видимому, обусловлено тем, что каждый металл проявляет себя индивидуально. Например, никель не подавляет крекирующую активность, а катализирует неселективный крекинг сырья до легких продуктов, кокса и водорода. Влияние ванадия становится заметным лишь при больших концентрациях (1,5— 2,0%) [215]. Однако при гидротермической обработке в регенераторе ванадий мигрирует к цеолиту и нарушает его кристаллическую структуру, в результате чего существенно снижается активность катализатора. Уменьшение активности может происходить также вследствие спекания металлизированной поверхности катализатора [208]. [c.55]


Смотреть страницы где упоминается термин Ванадий металлоорганические соединени: [c.45]    [c.225]    [c.84]    [c.15]    [c.287]   
Неорганическая химия Том 2 (1972) -- [ c.177 , c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Металлоорганические соединения



© 2025 chem21.info Реклама на сайте