Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения форма

    В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линейного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому составу и стереометрии) может по своей форме приближаться к жесткой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок — глобулу (глобулярные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают их от полимеров с иной геометрической формой молекул. [c.47]


    Третья особенность химии высокомолекулярных соединений— это зависимость свойств полимеров от геометрической формы макромолекул. В химии низкомолекулярных соединений фор.ма и физико-механические свойства молекул рассматриваются в сравнительно редких случаях (пространственная изомерия, теория напряжения). В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, различные классы линейных высокомолекулярных соединений, в зависимости от их строения, могут значительно различаться по своим свойствам. Но они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают и , от пол меров другой структуры. [c.36]

    Растворы высокомолекулярных соединений нмеют значительную вязкость, которая быстро возрастает с увеличением коицеитрации растворов. Повышение концентрации макромолекулярных растворов, добавки веществ, понижающих растворимость полимера, и, часто, понижение температуры приводят к застудневанию, т. е. превращению сильно вязкого, но текучего раствора в сохраняющий форму твердообразный студень. Растворы полимеров с сильно вытянутыми макромолекулами застудневают ири небольшой коицеитрации раствора. Так, желатин и агар-агар образуют студии и гели в 0,2—1,0% растворах. Высушенные студни способны вновь набухать (существенное отличие от гелей). [c.315]

    В табл. 1 в самой общей (усредненной) форме представлена характеристика элементного состава и структуры высокомолекулярных соединений по данным [7]. [c.12]

    Поскольку с помощью радиоактивного излучения и последующей химической обработки можно получать мембраны с порами заданного диаметра, а распределение пор по диаметрам чрезвычайно узкое, ядерные мембраны очень перспективны для микроаналитических исследований в цитологии и элементном анализе, для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом применялись для изучения размеров и формы различных типов клеток крови (в частности, для выделения раковых клеток из крови), для изучения вязкости крови и слипания ее клеток в зависимости от различных условий, для получения очищенной от бактерий воды в полевых условиях и многих других целей [59, 65—67]. [c.57]

    Столь заметное на рис. 3.2 преобладание четных кислот над нечетными и соответственно нечетных н. алканов над четными для нефтей обычно не характерно и в слабо выраженной форме проявляется лишь в наиболее молодых нефтях (например, калифорнийских [611]), причем только для достаточно высокомолекулярных соединений ( С2о и выше). [c.96]


    Многие высокомолекулярные соединения в основном состоят из линейных молекул. Но другие, например некоторые феноло-форм-альдегидные смолы, представляют собой пространственные трехмерные структуры. [c.159]

    К пластмассам относят обширную группу материалов, главной составной частью которых являются природные или синтетические высокомолекулярные соединения, способные при повышенной температуре и давлении переходить в пластическое состояние, формоваться под воздействием внешних сил и затем после охлаждения или отверждения устойчиво сохранять приданную форму. [c.213]

    Высокомолекулярное соединение — важнейшая составная часть, скрепляющая все компоненты в одно монолитное целое и придающая смеси (композиции) пластичность, способность формоваться, а также электроизоляционные, антикоррозионные и другие важнейшие свойства. Для этого используются кроме синтетических полимеров эфиры целлюлозы, белковые вещества, асфальты и пеки. По составу пластмассы можно разделить на нена-полненные, представляющие собой чистые или с очень незначительными добавками полимеры, и наполненные пластики — смеси, содержащие наполнители, пластификаторы, красители, стабилизаторы, отвердители и другие добавки, равномерно распределенные в связующем — смоле. [c.213]

    Вторая причина многообразия структурных форм высокомолекулярных соединений нефти заключается в том, что с ростом молекулярного веса увеличивается число элементов, участвующих в построении молекул. Так, в углеводородной части масляных фракций из сернистых нефтей уже содержатся значительные примеси сернистых соединений, но практически отсутствуют кислородные соединения в составе смол наряду с серой уже находятся значительные количества кислорода, а нередко и азота наконец, в асфальтенах, кроме серы и кислорода, сконцентрирована основная масса азота, ванадия, никеля [30, 31, 32] и некоторых других микроэлементов. Таким образом, с увеличением молекулярного веса фракций нефти наблюдается постепенный переход от компонентов чисто углеводородного характера к смесям, состоящим из углеводородов и гетеро-органических соединений. Структура и состав этих соединений непрерывно усложняются в результате увеличения числа гетероатомов, входящих в Молекулу. Однако углеводородный скелет по-прежнему остается несущим каркасом молекул. Поэтому огромное разнообразие возможных структурных форм высокомолекулярных соединений нефти в случае смол и асфальтенов, в отличие от углеводородов, обусловлено не только изомерией углеродного скелета молекулы, но и изомерией, вызванной наличием в молекулах атомов серы, кислорода, азота и других элементов. В наиболее высокомолекулярной смолисто-асфальтеновой части нефтей уже встречаются заметные количества металлоорганических соединений, что еще более увеличивает качественное разнообразие структурных форм этих соединений. [c.22]

    Для газообразного фазового состояния характерно полное отсутствие упорядоченности во взаимном расположении частиц. Жидкое (аморфное) состояние определяется ближним порядком во взаимном расположении частиц и отсутствием дальнего порядка. Кристаллическое состояние вещества характеризуется как ближним, так и дальним порядком во взаимном расположении частиц. Как отмечалось ранее, особенностью полимерных молекул является анизотропия их формы. Поэтому в кристаллических высокомолекулярных соединениях понятие дальний порядок включает в себя, как максимальную вероятность нахождения центра тяжести данной молекулы от той, от которой ведется отсчет ( координационный порядок ), так и преимуще- [c.124]

    Агрегатные состояния полимеров - физические состояния высокомолекулярных соединений, отличающиеся подвижностью элементов структуры и способностью к сохранению собственного объема и формы. [c.396]

    Смолистые вещества, согласно этому взгляду, есть, так сказать, еще недоработанная нефть, или растворимые остатки нефтематеринского вещества. Многие неясные вопросы решаются в общем плане с принятием этой точки зрения достаточно просто. Присутствующие в нефти гетерогенные соединения, кислородсодержащие ароматические углеводороды, гибридные формы углеводородов являются продуктами ранних стадий превращения органического вещества, а высокие удельные веса нефтяных фракций, рапным образом и оптическая деятельность, свидетельствуют о неполной завершенности процессов превращения органического вещества. Высокомолекулярные соединения смолистых веществ в ходе процессов разукрупнения молекул образуют углеводородные вещества циклической структуры, переходящие из высших фракций в средние и низшие, вследствие чего бензиновые и керосиновые фракции тяжелых нефтей имеют высокие удельные веса. Таким образом, эта характеристика фракций непосредственно связана с природой смолистых веществ. Принцип наименьшего изменения молекул не позволяет думать, что разукрупнение молекул смолистых веществ сразу дает только удельно легкие осколки, которые могли бы образовать фракции с теми низкими удельными весами, которые характерны для нефтей значительного нревращения. [c.158]


    Макромолекулы могут принимать различные формы, во многом определяющие свойства высокомолекулярных соединений. Так, например, линейные гибкие макромолекулы отличаются высокой эластичностью и пластичностью. Эластичностью считается способность высокомолекулярного соединения растягиваться при приложении внешнего усилия за счет выпрямления цепей макромолекул и затем, при снятии нагрузки, возвращаться в исходное, наиболее вероятное состояние. Под пластичностью понимают свойство высокомолекулярного соединения изменять форму за счет перемещения одних цепей макромолекул относительно других при наличии сдвигающего усилия, превосходящего силы межмолекулярного сцепления. Наличие полярных групп в высокомолекулярных соединениях делает их более жесткими. Жесткостью отличаются макромолекулы спиральной конфигурации. Различными свойствами в зависимости от условий существования обладают разветвленные макромолекулы. Указанные типы макромолекул связаны в высокомолекулярных соединениях межмолекулярны-ми силами сцепления, на которые оказывают влияние как взаимодействие между входящими в молекулу группами атомов, так и взаимодействие аналогичных группировок соседних молекул. [c.29]

    Считается, что в аморфных структурах растворы высокомолекулярных соединений точно так же, как и молекулы в обычных жидкостях, имеют параметры ближнего и дальнего порядка. В ближнем порядке молекулы высокомолекулярных соединений ориентированы друг относительно друга параллельно, образуя достаточно плотные и хорошо спрессованные пучки или пачки молекул. Существование таких пачек в растворах высокомолекулярных соединений подтверждается пластичностью растворов полимеров, так как молекулы высокомолекулярных соединений могут по различному располагаться в таких пачках, да и пачки могут принимать различные формы. В нефтяных дисперсных системах структурные группы высокомолекулярных соединений, пучки или пачки, могут легко образоваться из макромолекул, имеющих регулярное строение полициклических и нормальных парафиновых углеводородов, нафтеновых и различных смешанных молекул, а также гетероатомных молекул. [c.59]

    В зависимости от формы макромолекул высокомолекулярные соединения бывают не только линейными, т. е. состоящими из практически неразветвленных цепных макромолекул, но и разветвленными и пространственными (трехмерными). [c.377]

    Полимерные соединения растворяются гораздо медленнее, чем обычные вещества. Растворителями для них, как правило, служат низкомолекулярные продукты. На первой стадии растворения идет процесс набухания, при котором полимер, многократно изменяя свой объем, сохраняет, однако, свою форму. Вязкость растворов высокомолекулярных соединений во много раз превышает вязкость концентрированных растворов низкомолекулярных соединений. При добавлении значительного количества растворителя достигается достаточная текучесть в широком диапазоне температур. Это наблюдается, например, у лаков и клеев на основе полимерных материалов. [c.380]

    Гибкость цепных макромолекул — отличительная и важная характеристика высокомолекулярных соединений, которая определяет весь комплекс их особых свойств. В результате гибкости макромолекулы постоянно меняют свою конфигурацию. Изменение формы макромолекулы происходит обычно или как результат вращательных колебаний ее отдельных частей около положений, соответствующих минимумам энергии, или в результате скачкообразных вращательных переходов от одной конформации к другой, обладающих минимумами энергии. [c.381]

    Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. [c.235]

    Большинство растворов высокомолекулярных соединений и золи некоторых гидрофобных коллоидов способны при известных условиях переходить в особое состояние, обладающее в большей или меньшей степени свойствами твердого тела. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью, называется гелем. Таким образом, гели или, как их еще называют, студни, представляют собой коллоидные системы, потерявшие текучесть в результате возникновения в них внутренних структур (опыт 118—121). [c.229]

    С геометрической точки зрения все разнообразие форм макромолекул высокомолекулярных соединений может быть сведено в основном к трем типам линейной, двухмерной (или плоскостной) и пространственной, т. е. трехмерной. [c.327]

    На процесс гелеобразования большое влияние оказывают размеры, форма коллоидных частиц или макромолекул высокомолекулярного соединения, температура, концентрация электролитов в [c.390]

    С. Р. Сергиенко [215] пришел к выводу, что структуры высокомолекулярных соединений нефтей по своей форме не являются ни линейными, ни разветвленными и ввел новое понятие о гроздьевидной структуре, в которой возможны различные сочетания алифатических, нафтеновых и ароматических структур как углеводородных, так и неуглеводородных (гетероорганичес-ких). [c.15]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    Силикагели — неорганические высокомолекулярные соединения переменного состава, молекулы которых содержат кремнекислородный каркас с рядом гидроксильных групп. Выпускаются силикагели различных марок. Первая буква в марке обозначает форму и размер зерен, третья — преобладающий размер пор, например кем — крупнозернистый силикагель мелкопористый. Кроме того, выпускаются мелкопористые силикагели ШСМ и МСМ, а также крупнопористые —КСК, ШСК, МСК. Выбор марки силикагеля зависит от размера молекул адсорбируемых комиоиентоп. Например, для разделения и аналмза керосиновых и масляных фракций используются крупнопористые силикагели, для осушки углеводородов — мелкопористые. [c.72]

    Из высокомолекулярных соединений нефти только парафиновы-е углеводороды по форме молекулы соответствуют первому (парафины нормального строения) или второму (разветвленные парафины) типу. Остальные высокомолекулярные соединения нефти, как углеводороды, так и гетероорганические соединения, нельзя отнести ио форме ни к одному из трех приведенных выше геометрических типов молекул. Наиболее правильное представление о форме молекул этих соединений может дать сравнение их с гроздью винограда [5]. Поэтому для характеристики формы молекулы высокомолекулярных соединений нефти, за исключением парафинов, следует ввести четвертый тип — гроздьевидный. Эта форма окажется, по-видимому, более приемлемой, чем три вышеупомянутые, также и для характеристики молекул таких высокомолекулярных природных соединений, как лигнин, природные смолы и др. Со временем появятся, вероятно, и синтетические высокомолекулярные соединения, приближающиеся по структуре молекул к гроздьевидиой форме. [c.14]

    Способность высокомолекулярных соединении нефти к люминесценции лежит в основе методов дистанционного зондирования [102]. Проводится анализ флуоресцентного отклика нефтяной системы на зондирующий импульс лазерного излучения. Интенсивность, форма и структура сигнала соотносятся с репером, в качестве которого служит сигнал комбинационного рассеяния воды. В качестве каналов информации при идентификации нефтей и нефтепродуктов можно использовать не только ширину спектра и положение максимума длины волны флуоресценции, но и такие зависимости, как зависимость продолжительности жизни возбужденного состояния по снектрз, зависимость параметров спектров от длины волны возбужденного света. Про- [c.57]

    Высокомолекулярные соединения в результате межмолекулярных сил притяжения ассоциируют друг с другом, образуя зародыши новой фазы или первичные ССЕ. Зародыши или первичные ССЕ могут иметь различные геометрические формы. Если формированию зародыпга не препятствует вязкость диспер-сиоииой среды, он получается правильной формы (сферической, цилиндрической и т. д.). Ипая картина наблюдается при формировании зародышей в вязкой среде (гудроны, крекинг-остатки, пеки). В этом случае возникающий зародыш может принимать причудливые формы (рис. 9). [c.75]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    Один из создателей молекулярной теории растворов высокомолекулярных соединений ШтаудингерО представлял эти макромолекулы в форме палочек, свободно перемещающихся в жидкости. Однако экспериментальное исследование поляризации растворов высокомолекулярных соединений показало, что поведение макромолекул высокомолекулярных соединений в растворе сходно с поведением свернутых в клубок нитей. Конформации таких клубков и нитей в них в жидкой среде непрерывно изменяются вследствие теплового движения. В целом же форма клубка остается близкой к форме элипсоида вращения. Это подтверждается тем, что, в то время как длина линейных макромолекул значительно превосходит их поперечный размер — в сотни и тысячи раз, степень ассоциации этих молекул невелика и чуть выше 10. [c.61]

    Большой практический интерес представляет изучение процессов деструкции смол и асфальтенообразования из них при нагревании с учетом продолжительности термообработки, температуры, давления окружающей среды различных газов, а также выявление численных значений пороговых температур и концентраций смол в растворах, По мере перехода от смол к асфальтенам происходит повышение их плотности, изменение элементного состава. Кроме этого, плоские молекулы смол [117] превращаются в пространственные, но легко деформируемые молекулы асфальтенов [ 118]. Дальнейшие превращения приводят к образованию продуктов более глубоких форм уплотнения — карбенов и карбоидов. Асфальтены имеют высокую степень конденсированности ядер (3-4 против 2-3 у смол). Установлено, что структурные звенья смол и асфальтенов нефтяных остатков состоят из малореакционных конденсированных ароматических ядер и более реакционных цепей алифатического строения. Наряду с конденсированными ароматическими кольцами в ядре могут находиться и нафтеновые структуры [119], Одним из современных эффективных способов исследования высокомолекулярных соединений нефти является электронный парамагнитный резонанс (ЭПР), [c.114]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой (см. с. 273) без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цеин (рис, 38). Если представить, что три атома углерода С , Сз и Сз молекулы лежат в одной плоскости, то атом С4 может равномерно занимать любую точку по краю окружности конуса , образованного вращением связи Сг—Сз как оси вращения. То же касается и атома Сд, допуская его свободное вращение вокруг простой связи Сз—С4. Продолжая рассуждать так и дальше, можно предположить, что в случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма макромолекулы будет довольно сложной н нерегулярной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка шерсти. Однако, как известно, такое внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникаюн ими за счет взаимодействия соседних замещающих атомов или групп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними, Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.381]

    Уравнения (VIII, 6) и (VIII, 7) имеют очень большое значение в коллоидной химии, так как позволяют па основании измерений коэффициента диффузии D определить радиус взвешенных коллоидных частиц сферической формы, а также величину молекул высокомолекулярных соединений. Для частиц или макромолекул несферической формы выражение 6ят)г в уравнении (VIII,7) заменяется более сложным. [c.301]

    Как показывает опыт, свойства высокомолекулярных соединений, а также их растворов определяются не только химическим составом, но н размерами и формой макромолекулы. От величины и формы молекул соединений зависят прочность, гибкость, эластичность, устойчивость к многократным деформациям и ряд других важнейших технических свойств изделий, получаемых из них, при сраннительно невысокой плотности. [c.327]

    Лиофобные золи характеризуются сравнительно короткой стадией скрытой коагуляции для высокомолекулярных соединений период скрытой коагуляции может быть продолжительным. Часто скрытый период коагуляции в растворах высокомолекулярных соединений совсем не переходит в явную форму нли заканчивается студнеобразовацием. [c.367]

    При обычной коагуляции коллоидный раствор разделяется на две фазы жидкую дисперсионную среду и более или мекее твердую дисперсную фазу (рис. 122, а). При гелеобразовании подобного разделения нет вся масса раствора превращается в твердообразную нетекучую систему, во всех частях которой концентрация дисперсной фазы или высокомолекулярного соединения остается одинаковой и неизменной. При коагуляции мицеллы контактируют между собой наиболее тесно, что ведет к образованию осадка. При возникновении внутренних структур, т. е. при образовании студня, происходит объединение частиц в форме сетки или ячеек, напоминающих 11ену (рис. 122, 6). [c.390]

    А 18.17. а) Напишите схему образования феноло-форм-альдегидной слюлы. Как называется протекающая в этом случае реакция образования высокомолекулярных соединений В чем ее особенность б) Напишите схему образования смолы при взаимодействии /г-кре-зола с уксусным альдегидом. Возможно ли здесь образование трехмерного полимера типа резита в) Можно ли получить феноло-альдегиднук) смолу из 2,4-диметилфенола  [c.97]


Смотреть страницы где упоминается термин Высокомолекулярные соединения форма: [c.315]    [c.11]    [c.197]    [c.14]    [c.17]    [c.35]    [c.163]    [c.61]    [c.154]    [c.15]    [c.23]    [c.389]   
Общая химическая технология (1977) -- [ c.351 , c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2025 chem21.info Реклама на сайте