Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические схемы каталитической очистки

Рис. 2.22. Технологическая схема узла санитарной очистки отходящих газов производства ПМДА 1 — циклон 2 — воздуходувка 3 — топка под давлением 4 — смеситель 5 — пластинчато-каталитический реактор 6 — реактор с насыпным слоем катализатора 7 — катализатор 8 — дымовая труба 9 — потенциометр для измерения температур в точках выхода газа из топки под давлением (а), выхода газа из смесителя (б), в нижней части (в), средней части (г) и верхней части (д) слоя катализатора и на входе очищенного газа в дымовую трубу (е) Рис. 2.22. <a href="/info/24932">Технологическая схема</a> узла <a href="/info/715749">санитарной очистки</a> отходящих <a href="/info/146685">газов производства</a> ПМДА 1 — циклон 2 — воздуходувка 3 — топка под давлением 4 — смеситель 5 — пластинчато-<a href="/info/66385">каталитический реактор</a> 6 — реактор с <a href="/info/1586441">насыпным слоем катализатора</a> 7 — катализатор 8 — <a href="/info/337870">дымовая труба</a> 9 — потенциометр для <a href="/info/14238">измерения температур</a> в <a href="/info/602612">точках выхода</a> газа из топки под давлением (а), <a href="/info/96143">выхода газа</a> из смесителя (б), в <a href="/info/250522">нижней части</a> (в), <a href="/info/916048">средней части</a> (г) и <a href="/info/1006898">верхней части</a> (д) <a href="/info/25630">слоя катализатора</a> и на входе очищенного газа в дымовую трубу (е)

    Технологическая схема установки риформинга со стационарным слоем катализа приведена на рис. IV-3. Установка включает следующие блоки гидроочистки сырья, очистки циркуляционного газа, каталитического риформинга, сепарации газов и стабилизации бензина. [c.41]

    Установка пиролиза состоит из реакторного блока, секции выделения пирогаза и разделения смолы, секции компримирования, очистки и осушки газа пиролиза и секции газоразделения. На рис. П1-8 изображена упрощенная технологическая схема установки пиролиза ЭП-300, спроектированная Уфимским филиалом ВНИПИнефть. Сырьем установки служит фракция 62—180 °С прямогонного бензина и фракция 62—140°С бензина-рафината каталитического риформинга. Предусмотрен также пиролиз этана и пропана, получаемых в процессе и с заводских ГФУ. [c.33]

    Поскольку в печном газе при сжигании серы отсутствуют пыль и каталитические яды, технологическая схема производства серной кислоты из серы не содержит отделения очистки газа, отличается простотой и получила название короткой схемы (рис. 13.19). [c.176]

    Технологическая схема процесса представлена на рис. 12.7. Этилен и хлор смешиваются с циркулирующим потоком дихлорэтана. В реакторе t осуществляют каталитическое хлорирование этилена с образованием дихлорэтана. Инертные вещества и непрореагировавший этилен отделяют от дихлорэтана. Сырой дихлорэтан промывают водой в узле промывки 2 и очищают дистилляцией от легких и тяжелых примесей и воды в узле очистки 3. [c.401]

    Оформление технологического процесса получения изопреновых каучуков с использованием различных каталитических систем не имеет принципиальных отличий. Технологическая схема включает следующие основные стадии [22] 1) полимеризация изопрена 2) дезактивация катализатора 3) стабилизация полимера 4) водная дегазация каучука 5) сушка каучука 6) очистка возвратного растворителя. [c.219]

    Выше отмечалось, что основной особенностью этой разновидности каталитического риформинга 5 вляется применение алюмомолибденового катализатора, менее активного, чем платиновый, но не требующего очистки сырья от серы. Принципиальная технологическая схема промышленной установки гидроформинга показана на рис. 76 [c.232]

    Каталитические процессы с большим выходом продукта за один цикл осуществляются, как правило, по прямоточным технологическим схемам — производство серной кислоты по контактному способу, производство разбавленной азотной кислоты и др. В таких системах для защиты атмосферы применяется санитарная очистка отходящих газов. Методы очистки газов отражены в некоторых примерах главы VII. [c.110]


    В технологических схемах каталитической конверсии при атмосферном давлении с последующей промывкой газа жидким азотом (см. схему 3, гл. I) необходима предварительная тонкая очистка [c.169]

    Очистка бензинов прямой перегонки нефти, термического и каталитического крекинга щелочью осуществляется пр следующей принципиальной технологической схем Подвергаемый очистке бензин закачивается в пустотелую колонну, заполненную примерно на /з высоты раствором щелочи. На трубопроводе для подачи бензина в колонну устанавливается инжектор, в который засасывается из колонны раствор щелочи. В инжекторе осуществляется интенсивный контакт реагента с очищаемый продуктом. Смесь продукта со щелочью подается в нижнюю часть колонны. Щелочь, имеющая более высокий удельный вес, чем бензин, опускается вниз, а бензин направляется вверх, проходя при этом через слой щелочи. На современных заводах [c.267]

    Технологическая схема каталитической конверсии природного газа изображена на рис. 32. Природный газ, предварительно очищенный от сернистых соединений, поступает в сатурационную башню 1, орошаемую горячей водой. В ней он насыщается водяными парами, после чего смешивается с СОг, поступающей со стадии очистки синтез-газа. Степень насыщения природного газа водяным паром и количество добавляемой СО2 зависят от заданного соотношения СО и Н2 в синтез-газе. Затем газо-паровая смесь подогревается в теплообменнике 2 горячими реакционными газами до 500 °С и поступает в конвертор 5. [c.124]

    На рис. 1.19 приведена технологическая схема каталитического гидродеалкилирования толуола и ксилолов. Сырье в смеси с водородсодержащим газом нагревается в трубчатой печи 1 до температуры реакции и поступает в реактор 2, заполненный катализатором. Продукты реакции охлаждаются и поступают в газосепаратор 3 для отделения газа от жидкого продукта. Жидкий продукт, представляющий собой смесь бензола и непрореагировавших толуола, ксилола и более тяжелых ароматических углеводородов, подается в стабилизатор 4 для удаления растворенных легких компонентов. Если этого требуют технические условия на бензол, остаток из колонны 4 подвергается контактной очистке в аппарате 5 и направляется в ректификационную колонну 6 для выделения концентрированного бензола. Непрореагировавшее сырье возвращается в процесс. Рециркулирующий водород из газосепаратора 3 также поступает в систему гидродеалкилирования. Часть циркулирующего водорода поступает в узел очистки водорода, а часть сбрасывается в топливную сеть. [c.74]

    В технологических схемах каталитической конверсии без давления с промывкой газа жидким азотом (см. схему 3, стр. 13) необходима предварительная тонкая очистка от двуокиси углерода. В этом случае применяют двухступенчатую моноэтаноламиновую очистку от двуокиси углерода (до 40 см /м ), перед второй ступенью газ экономичнее компримировать до давления 25—30 ат, равного давлению в блоке промывки газа жидким азотом. После второй ступени возможна щелочная (или другая) тонкая очистка. Однако из данных работы следует, что при очистке под давлением 20—30 ат можно получить газ, содержащий не более 4—5 см 1м СО . [c.129]

    Роль катализа в технологической, схеме производства, конечно, не исчерпывается приведенной выше типичной схемой (см. стр. 12). Некоторые производства включают ряд последовательных каталитических процессов. Примером может служить получение водорода из метана, включающее две или три стадии каталитической конверсии основного реагента, а также очистку газов от вредных примесей путем каталитического превращения их в вещества, неактивные или легко выделяемые из реакционной смеси. В других случаях каталитические процессы являются вспомогательными операциями (например, процессы каталитической очистки отходящих газов). Естественно, что такие производства не относятся к числу каталитических, хотя и включают каталитические процессы. [c.16]

    Обеспечение качественным сырьем установок каталитического крекинга является весьма важной задачей при выборе технологических схем заводов. Ресурсы сырья расширяют обычно, вовлекая в сырье крекинга более тяжелые фракции. Однако высококипящие фракции обычно характеризуются повышенным содержанием в них смолистых веществ, азотистых соединений и металлов, которые в значительной степени ухудшают показатели процесса каталитического крекинга. Этим и объясняется появление в последние годы большого числа работ по изучению различных методов подготовки сырья для каталитического крекинга. За рубежом такие методы, как гидроочистка и очистка серной кислотой продуктов, поступающих на каталитическое крекирование, получили промышленное применение. БашНИИ НП в этом направлении были проведены работы, частично опубликованные ранее. [c.80]


    Особенности технологической схемы моноэтаноламиновой очистки зависят в значительной мере от технологической схемы производства аммиака. В случае каталитической конквпг.ии пппппднигг) гя.ча при атмосферном давлении с последующей медноаммиачной очисткой от окиси углерода (см. схему 1, гл. I) целесообразно проводить одноступенчатую грубую очистку от СО2 (до 1—2,5%) до компрессии. Дальнейшая очистка от двуокиси углерода осуществляется под давлением одновременно с удалением окиси углерода. [c.169]

    Таким образом, при выборе технологической схемы переработки сернистой или высокосернистой нефти необходимо тщательно изучать распределение серы по продуктам, получаемым в результате термических и каталитических процессов, и исследовать химическую природу соединений серы. Превращение большего количества общей серы, находящейся в нефти, в НаЗ облегчает задачу очистки нефтепродуктов, так как процессы такой очистки хорошо отработаны. Для удаления из продуктов сернистых соединений, термически более стойких, чем сероводород, требуется глубокая и сложная очистка с применением катализаторов и водорода (гидроочистка). В зависимости от термостойкости серы, содержащейся в нефти, ее распределения по продуктам решаются и вопросы предотвращения коррозии, выбор оборудования и аппаратуры для процессов переработки как самой нефти, так и ее дистиллятных продуктов. [c.27]

    Первые открытые Циглером и Натта каталитические системы в условиях, предложенных для их применения, были малоактивными. Для проведения полимеризации этилена и пропилена в среде углеводородных растворителей требовались высокие концентрации катализаторов, причем нх фактическое использование было крайне низким (менее 10%), основная часть катализатора оставалась в полимере. Для очистки полимера от остатков катализатора проводились трудоемкие операции промывок с использованием спирта. Промывные агенты смешивались с углеводородным растворителем, в котором осуществлялась полимеризация поэтому требовалась весьма сложная система регенерации растворителей для возвращения их в производственный цикл. Однако, несмотря на относительно громоздкую технологическую схему первых производств ПЭНД, мощности их с каждым годом наращивались, а спрос на новый материал непрерывно возрастал. [c.6]

    По проекту предусматривалось введение нескольких очередей завода. Технологическая схема первой очереди включала АВТ, установки риформинга и каталитического крекинга, обеспечивающие максимальный отбор светлых продуктов от исходной нефти, установки вторичной перегонки и очистки и вспомогательное хозяйство. [c.173]

    Технологическая схема подготовки газа состояла из стадий ката.титической конверсии природного газа в трубчатой иечи паровоздушной доконверсии природного газа в реакторе охлаждения газа каталитической конверсии окиси углерода в две стуиеяи очистки газа от двуокиси углерода в абсорбере, орошаемом раствором моноэтаноламина каталитической очистки конвертированного газа от окиси и двуокиси углерода. [c.210]

    На рис, IV-16 локазапа технологическая схема каталитической очистки Отходящих нитрозных газов от оксидов азота ам- [c.161]

    Особенности технологической схемы моноэтаноламиновой очистки определяются главным образом технологической схе.мой синтеза аммиака. В случае каталитической конверсии природного газа без давления с последующей медноаммиачной очисткой от окиси углерода (см. схему 1, стр. 10) целесообразно проводить одноступенчатую грубую очистку от СО2 (до 1—2,5%). Дальнейшая очистка от двуокиси углерода осуществляется одновременно с удалением окиси углерода для тонкой очистки от СОг газ промывают аммиачной водой. [c.129]

    Разработана технологическая схема установки очистки сточных вод методом каталитической тер-моокислительной деструкции в парогазовой фазе, представленная на рис. 7.10. Сточная вода из сборника 3 подается в выпарной аппарат /, упаренная пульпа далее поступает на центрифугу 2, где она обезвоживается, и осадок на сусигаиие направляется на сжигание. Пары воды и органических веществ нагреваются в подогревателе 7 за счет тепла парогазовой смеси, выходящей из контактного аппарата 9, и после смешения с подогретым воздухом при 300 °С поступают в контактный аппарат. Обезвреженная парогазовая смесь, пройдя подогреватель 7, подается в увлажнитель 5, а из него поступает в греющую камеру выпарного аппарата. Конденсат из греющей камеры используется в производстве. [c.196]

    При низкотемпературной изомеризации на катализаторе Рт — А12О3 — С1, учитывая весьма жесткие требования к содержанию вышеназванных примесей в сырье и водороде (табл. 3.3), в схеме установки предусматривают блоки каталитической очистки сырья и водородсодержащего газа с последующей осушкой на молекулярных ситах. Подобные усложнения технологической схемы и соответственно увеличение эксплуатационных и капитальных затрат оправдываются значительно более высокими показателями процесса. [c.95]

    На заводе и Маркус Хук построена специальная бензиноочистная установка Гудри, работа которой такл<е основана на принципе термокаталитической очистки. Технологическая схема процесса на ней упрощена по сравнению со схемой каталитического крекинга, но в принципе осталась такой же. Очшдаемый бепзип при температуре 120 С и давлении около 0,4 МПа поступал в печь для испарепия, откуда выходил с температурой 350 °С и под давлением около 0,4 МПа, т. е. в парообразном состоянии. Бензиновые пары пропускались через д С каталитические камеры, работающие попеременно (работа — регенерация) с переключением через каждые 3 ч. [c.65]

    Каталитическая очистка бензиновых дистиллятсп состоит из мио кества специфических процессов, пе связанных друг с другим технологической схемой и объединенных в одну группу лишь конечной целью. Качество любого авиационного или автомобильного бензина опреде.чяотся его фракциозтным составом, химической стабильностью, коррозионностью и антидетонационными свойствами. Перечисленные факторы в той или ниой степени зависят от исходного сырья и обусловлены технологией первичной переработки сырья на бензин. [c.72]

    На основании проведенных лабораторных исследований и опыта эксплуатации установки Мерокс с гомогенным катализатором, была разработана технологическая схема очистки фракции С5-С5 (головки стабилизации каталитического крекинга) от сернистых соединений с использованием существующего оборудования. В качестве аппаратов для моноэтаноламиновой и щелочной очистки от сероводорода и меркаптанов были использованы существующие емкости Е-7, Е-9, Е-1 1 установки ГФУ. В качестве регенератора меркаптидсодержащей щелочи была использована насадочная колонна, изготовленная из кожухтрубного теплообменника. [c.60]

    Принципиальная технологическая схема разработанного процесса очистки головки стабилизации (С3-С5 каталитического крекинга) представлена на рис.3.3. Головка стабилизации (поток I) после моноэтаноламиновой очистки и очистки от сероводорода 1 %-ным раствором щелочи поступает в инжекторный смеситель С-2, куда подается регенерированный щелочной раствор катализатора (поток И) из емкости Е-28а и свежая щелочь (поток III) из щелочного бачка Е-28. В качестве щелочного катгшизаторного раствора нами было рекомендовано использовать 0,05 % мае. раствор натриевой соли дисульфофталоцианина кобальта в 10-15 % мае. растворе едкого натра с добавкой 2 % мае. ДЭГ. Д шее смесь щелочи и головки стабилизации поступает [c.60]

    Сотрудниками кафедры (доц. Б. А. Жидков, Ю. В. Князев) совместно с отделом каталитической очистки Института физхимии АН УССР и Днепродзержинским филиалом ГИАПа разработан каталитический метод очистки отходящих нитрозных газов производства слабой азотной кислоты путем восстановления окислов азота аммиаком на неплатиновом катализаторе. Определены условия приготовления высокоизбирательных механически прочных катализаторов выведены уравнения кинетики, предложена технологическая схема очистки. Разработанный метод очистки позволяет полностью очищать отходящие газы от окислов азота при незначительном расходе аммиака. [c.128]

    При аварийных ситуациях приходит в действие система защитных блокировок, прекращаются подача аммиака в смеситель, воды на орошение абсорбционной колонны, природного газа в установку каталитической очистки и газотурбинная установка (ГТУ) переводится на энергетический режим. Эти операции исключают возможность образования взрывоопасных смесей и выбросов вредных газов в атмосферу. Технологическое оборудование при этом временно консервируется — сохраняется рабочее давление в аппаратах, предотвращается провал жидкости в абсорбционной колонне в результате продувки постоянным потоком воздуха из компрессора ГТУ. При необходимости технологическая схема может быть полностью отключена от ГТУ для проведения восстановительного ре-амонта. [c.216]

    Принципиальная технологическая схема конверсии метана природного газа для производства азотоводородной смеси, применяемой в синтезе аммиака, показана на рис. 25. Природный газ под давлением около 4 МПа проходит подогреватель и подвергается очистке от серосодержащих соединений каталитическим гидрированием их в сероводород с последующей адсорбцией НзЗ. Очищенный газ смешивают с водяным паром в соотношении 3,7 1, подо- [c.76]

    ДальнеЁшее согершеЕствование технологии паровой каталитической конверсии должно быть направлено на увеличение давления процесса, совершенствование методов очистки водородсодержащего газа, упрощение технологической схемы за счет сокращения количества стадий производства или их совмещения, а также создание замкнутой, безотходной технологии. Вместе с тем широкое внедрение в XI и ХП пятилетках процесса производства водорода и синтез-газа каталитической конверсией ставит новые серьезные задачи по обеспечению сооружаемых производств катализаторами, отвечающими современному техническому уровню. [c.5]

    В 1831 году английский ученый П.Филипс разработал контактный способ производства серной кислоты на платиновом катализаторе. Позже платина была заменена контактной массой на основе оксида ванадия (V), что позволило снизить температуру зажигания. В начале XX века Р. Книтч установил причины отравления катализатора при использовании в качестве сырья колчедана и разработал методы очистки оксида серы (IV) от каталитических ядов. Это было использовано при разработке различных технологических схем производства серной кислоты контактным методом, среди которых получила широкое распространение в России и за рубежом так называемая тентелевская схема , впервые освоенная в России на заводе Тентелева. [c.152]

    Исходя из этого была предложена технологическая схема производства формальдегида непосредственно из метанола-сырца, в которой совмещены стадии каталитической очистки сырья и получения формальдегида. Подобная технология, предложенная в нашей стране в 1978—79 гг., позволяет, не меняя принци1шально технологической схемы процесса, не только использовать вместо метанола-ректификата сырец, но и утилизировать содержащиеся в последнем побочные продукты, снизить расход пара на ректификацию и, в целом, повысить технико-экономические показатели производства без снижения качества конечного целевого продукта. [c.299]

    Сочетая способы каталитического окисления и физической адсорбции, на угле можно осуществить тонкую очистку газа от всех сернистых соединений. Недостатком угольной адсорбции есть вдкличность процесса и сложность технологической схемы. При большой мощности современных установок синтеза аммиака и метанола оборудование узла сероочистки становится очень громоздким. Все это делает проблема-, тичным развитие этого способа, хотя в настоящее время он имеет широкое распространение в ряде стран. [c.88]

    В технологических схемах парокислородной каталитической конверсии при атмосферном давлении с последующей промывкой газа яид1сиы азотом необходима предварительная тонкая очистка от двуокиси углерода. В этом случае применяют двухступенчатую моноэтаноламиновую очистку с низким давлением в первой ступени и 25-30 ат во второй [c.219]

    Очистка природного газа от газового конденсата может производиться методом паровой каталитической конверсии по принципиальной технологической схеме, приведенной на рис.92. Газ после низкотемпе-рату1)ной сепарации с давлением 6,0 - 8,0 1 1Па поступает в теплообменник 2, где нагревается до 280-300°С, затем он проходит реактор серо-очитски 4 и, смешиваясь с перегретым водяным паром из котла 6 поступает в реактор паровой конверсии 5. Конвертированный газ охлавдается в теплообменниках 2 и 3, при этом происходит конденсация паров воды, и направляется в систему осушки и очитски от СО2 /1247. [c.280]

    Собственно технологические потери, т. е. обусловленные сущностью процессов переработки нефти и нефтепродуктов, неизбежны сравнительно редко. Например, на установках каталитического крекинга нефтепродукты, осадившиеся в виде кокса на катализаторе, выжигаются при его регенерации. В подавляющем же числе случаев потери вызываются небрежностью обслуживания установок, недостатками в состоянии оборудования, нарушениями установленного технологического режима, нерациональностью технологических схем и аналогичными причинами, например являются следствием сбрасывания нефти со сточными водами на установках ЭЛОУ, небрежной очисткой воды из водогрязеотделителей, бензиновых водоотделителей и приемников, испарения легких фракций на технологических установках вследствие неплотностей во фланцевых соединениях, сальниках насосов и задвижек, из-за излишних перекачек и хранения в излишних ходовых резервуарах, недостаточно квалифицированного выполнения товарных операций и др. [c.102]

    Все реакции протекают с участием катализатора, и здесь записаны только основные стехиометрические уравнения. Технологические подсистемы включают очистку природного газа от серосодержащих соединений, которые являются каталитическими ядами, и очистку азотоводородной смеси от оксидов углерода. Функциональная схема [c.397]

    В настоящее время в США, ФРГ, Ялонии и других странах введено в действие или сооружается около 20 установок гидрокрекинга общей мощностью лереработки 10 млн. т/год с близкой технологической схемой, но, по-1Биди Мому, отличающихся по применяемому катализатору, сырью и условиям процеоса [1—5]. В большинстве случаев процеос идет в две ступени. В первой осуществляется очистка сырья от сернистых, азотистых соединений и частичное разложение тяжелых фракций с образованием средних дистиллятов во второй производится глубокий гидрокрекинг сырья, который по желанию может быть направлен на получение бензиновых фракций— сырья каталитического риформинга, топлива для турбореактивных двигателей или дизельного топлива. [c.178]

    Простота технологических схем и низкие энергозатраты открывают большие перспективы для использования нестационарных каталитических методов при очистке вулканизгщи-онных газов на шинном производстве. [c.372]


Смотреть страницы где упоминается термин Технологические схемы каталитической очистки: [c.187]    [c.273]    [c.5]    [c.5]    [c.210]    [c.18]   
Очистка технических газов (1969) -- [ c.2 , c.2 ]




ПОИСК





Смотрите так же термины и статьи:

Схема каталитической



© 2025 chem21.info Реклама на сайте