Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые углеводороды пиролиз

    Увеличение объемов при п проливе газообразных парафиновых углеводородов. Если пропан в процессе пиролиза па 100% превращается в метан и этилен или в пропен и водород, то объем газа при этом увеличивается вдвое. Из 100 л пропана образуется 200 л продуктов реакции. Отсюда следует, что независимо от того, каково удельное значение реакций крекинга и дегидрирования, всегда образуется двойной объем продуктов реакции сравнительно с исходным. Прн 50%-ном превращении пропана из 100 л пропана образуется 150 л продуктов реакции. [c.51]


    При нагревании до 500—700° углеводороды подвергаются пиролизу с разрывом молекулы на две или несколько частей меньшего размера. С увеличением длины цепи молекулы термическая устойчивость углеводородов снижается. Пиролиз парафиновых углеводородов сопровождается образованием непредельных углеводородов, водорода и предельных углеводородов меньшего молекулярного веса. [c.13]

    Г. ПОЛУЧЕНИЕ ГАЗООБРАЗНЫХ ОЛЕФИНОВ ПИРОЛИЗОМ ГАЗООБРАЗНЫХ ИЛИ ЖИДКИХ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.49]

    Этим способом можно подвергать пиролизу как тяжелые нефтяные фракции, так и газообразные парафиновые углеводороды. Очень сильное коксообразование не имеет значения для этого процесса, так как корунд, применяемый в качестве теплоносителя, освобождается от кокса прямым нагреванием. Установка работает непрерывно. Труднейшей задачей в этом процессе является подача шариков в подогреватель, так как здесь они подаются не газлифтом, а при номощи элеватора. [c.61]

    Эти газы, как и природный газ, являются источником газообразных при нормальных условиях парафиновых углеводородов, практиче-. ски не содержащих нримеси олефинов. При осуществляемых в весьма крупных масштабах процессах крекинга и пиролиза как неизбежные побочные продукты образуются большие количества углеводородных газов, представляющих, однако, собой смесь парафиновых и олефиновых углеводородов. Этот вопрос будет подробнее рассмотрен во втором томе, посвященном олефиновым углеводородам. [c.16]

    В разделе рассматривается газовый крекинг или, иными словами, пиролиз парафиновых углеводородов, газообразных при нормальных условиях. [c.50]

    Существенно отличается от других парафиновых углеводородов характер термического распада метана. Он весьма термостабилен и подвергается пиролизу только при высоких температурах, при этом продукты его разложения распадаются с большей скоростью, чем сам метан. Первичная реакция описывается стехиометрическим уравнением  [c.66]

    Эти реакции расщепления перхлорированных парафиновых углеводородов при повышенных температурах основаны на пиролизе с разрывом связей при наиболее высокохлорированных атомах углерода. [c.187]

    Аналогично этому и газофазное хлорирование парафиновых углеводородов также нужно проводить в условиях, когда пиролиз только что образовавшихся продуктов замещения пс наступает. Известно, что термическая стойкость галоидных алкилов снижается в направлении от первичных к третичным. [c.540]

    Если большие первичные алкильные радикалы не изомеризуются во вторичные полностью, то выход этилена с увеличением числа атомов углерода в молекуле парафина должен возрастать. Учитывая приближенность расчета, можно полагать, что состав продуктов высокотемпературного пиролиза парафиновых углеводородов практически не зависит от их молекулярной массы. Этот вывод в общем подтверждается имеющимися экспериментальными данными. [c.100]


    Парафиновые углеводороды. Известно, что при пиролизе простого парафинового углеводорода получаются более легкие парафиновые й олефиновые углеводороды последние, как полагают, являются первичными продуктами. При 600—800° С, когда происходит наибольшее газообразование, количество парафинов невелико, а олефинов — относительно больше при более низких [c.299]

    В настоящее время промышленность органического синтеза использует следующие основные виды сырья природные и попутные газы газообразные и жидкие углеводороды, получаемые при перегонке нефти, крекинге и пиролизе нефтепродуктов твердые парафиновые углеводороды и тяжелые нефтяные остатки коксовый и сланцевый газы смолу коксования, а также сланцевую и древесную смолу и торфяной деготь. Наша страна располагает громадными запасами нефти, природного и попутного нефтяного газа, представляющих собой наиболее экономичные виды сырья для химического синтеза. Использование нефтяного сырья для получения разнообразных продуктов представлено на рис. 63. Кроме того, для органического синтеза в больших количествах используются и неорганические соединения кислоты, щелочи, сода, хлор и т. п., без которых невозможно осуществление многих процессов. Как правило, любое сырье необходимо предварительно очистить от влаги, механических примесей, сернистых соединений и других п])имесей и разделить, выделив индивидуальные углеводороды. Таким образом получают очищенное сырье, из которого дальнейшей переработкой можно получить те или иные полупродукты и целевые продукты. [c.161]

    Из парафиновых углеводородов природных й попутных газов для алкилпрования обычно используют изобутан и изомеры пентана и октана. Нормальные парафиновые и нафтеновые углеводороды дают алкилаты, обладающие менее ценными свойствами. Из непредельных углеводородов чаще всего используют бутилены, пропилен, амилены, которые также могут быть получены из природных и попутных газов путем их пиролиза и дегидрогенизации. С точки зрения антидетонационных свойств наилучшие алкилаты получаются при алкилировании изобутана бутиле-нами. [c.132]

    РЕАКЦИИ РАДИКАЛОВ ПРИ ПИРОЛИЗЕ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.228]

    Перспектива широкого применения олефинов из газов крекинга и пиролиза настоятельно требует увеличения их ресурсов путем использования парафиновых углеводородов естественного газа и газов крекинга. [c.15]

    Процесс пиролиза газообразных углеводородов является как бы повторной ступенью процесса разложения низкомолекулярных, в основном парафиновых углеводородов, получаемых при пирогенизации жидкого сырья. [c.187]

    Хлорирование с разрывом углеводородной цепи. Большие количества тетрахлорэтана, четыреххлористого углерода и других хлорированных углеводородов производятся одновременным хлорированием и пиролизом парафиновых углеводородов. Это превращение происходит при реакции этана, пропана, сжиженного нефтяного или природного газа с избытком хлора при температуре 500—700°С. Газообразные продукты реакции охлаждаются и большинство органических продуктов конденсируется. Некоторое количество НС1, содержащегося в конденсированном сырце, нейтрализуется разбавленной щелочью и продукт отделяется от водной фазы, осушается и на- [c.280]

    Константа скорости этой реакции 10 см -моль -с" и соотношение скоростей распада и стабилизации изменяется до Это соотношение равно м 170/Р при 1100 К и в условиях пиролиза радикалы второй группы и в этом случае подвергаются только распаду. Однако при 800 К (о 2,8/Р и при давлениях, больших 3 МПа (30 кгс/см ), радикалы в основном стабилизируются. Это является причиной значительного содержания парафиновых углеводородов в бензине термического крекинга под давлением. [c.67]

    Решение задач расчет состава продуктов пиролиза различных парафиновых углеводородов нормального и изостроения при температуре 1000 К и малой глубине превращения сырья. [c.318]

    В углеводородной смеси, образующейся при пиролизе этана, этилен и этан являются главными углеводородными компонентами, однако кроме них в газе пиролиза содержится целый ряд углеводородов. Если пиролизу подвергается не этан, а смесь газообразных парафиновых углеводородов С —С4 или фракций нефти, то состав образующихся продуктов становится еще более сложным, а доля этилена становится меньше. В связи с этим при получении этилена путем пиролиза более выгодным считается использование этана в качестве исходного сырья. Однако этан имеется не везде, а его получение в чистом виде требует отдельного фракционирования и очистки. Поэтому для получения этилена применяют также газы пиролиза легких бензиновых фракций. [c.304]


    Настоящая книга состоит из И глав. В первых двух главах автор рассматривает источники получения олефинов как побочных продуктов (при деструктивной переработке нефтяного сырья, синтезе Фишера-Тропша, коксовании углей) и как целевых продуктов (при дегидрировании парафиновых углеводородов, пиролизе газообразных и жидких парафиновых углеводородов и коксовании тяжелых нефтепродуктов). В этих главах изложены также методы получения этилена гидрированием ацетилена и получения индивидуальных олефинов дегидратацией высших спиртов. В отдельном разделе рассматриваются методы получения индивидуальных изоолефинов полимеризацией соответствующих мономеров, а также синтез олефинов с определенным положением кратной связи в молекуле. [c.5]

    А. Кейлеманс и С. Перри [1] показали большие возможности пиролитического метода для идентификации парафиновых углеводородов. Пиролиз проводили в пустой кварцевой трубке при 500° С. На примере анализа изомерных гексанов (2,2-диметилбутана и 2,3-диметилбутана) ими была установлена корреляция между наблюдаемыми продуктами и возможным разрывом молекулы по различным связям С—С. В дальнейшем А. Кейлеманс и К. Крамере [49] усовершенствовали пиролитический метод, использовав инертный золотой реактор (длина 1 м, диаметр 1 мм) и эффективные колонки для разделения продуктов пиролиза, цис- и транс- Изомеры дают близкие качественные картины продуктов пиролиза, но степень превра-ш ения различна. В некоторых случаях метод пиролиза, по сравнению с масс-спектрометрическим методом, дает более цепные результаты. Так, например, 2-метил-пентан-2 и 4-метил-г ис-пентен-2 дают подобные масс-спектры, но резко различные хроматографические спектры продуктов пиролиза. Метод пиролиза более прост, но позволяет получать приблизительно такую же аналитическую информацию, что и масс-спектрометрический метод. Воспроизводимость обоих методов практически одинакова. [c.72]

    Газовый крекинг регенеративным способом Кор-регя- Нп8сЬе-Ши1 -Уег/ак- ген) [23]. Способ пиролиза, оспованный на регенерационном принципе, применяется как для производства этилена пиролизом этапа, так и для получения ацетилена. Техническое совершенство печей системы Копперс-Хаше делает особенно выгодным применение принципа регенерации и обеспечивает максимально возможное использование тепла. Здесь могут быть достигнуты значительно более высокие температуры, чем при пиролизе в трубчатых печах, в результате чего может быть сокращено время реакции. В интервале температур 870—1110° пронан расщепляется на 85—90% с образованием 34% вес. этилена. Этан при 900—980° превращается на 75—85%, давая до 52,5% этилена. Все выходы достигаются за однократный пропуск сырья через печь и могут быть увеличены еще более нри работе с циркуляцией, т. е. когда не подвергшаяся пиролизу часть парафиновых углеводородов возвращается обратно в процесс. Табл. 27 показывает результаты полупромышленного опыта пиролиза регенеративным способом. [c.54]

    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    Нитрование высокомолекулярных парафинов проводят в настоящее время двумя способами. Способ, разработанный Грундманом [27], состоит в том, что нагретый до 170—180° парафиновый углеводород взаимодействует с перегретыми нарамп азотной кислоты. В этих условиях нитрование идет исключительно быстро. Метод применим при условии, чтобы температура начала кипения углеводородной смеси составляла 160—170°. Для углеводородов с 7—12 атомами С газофазное нитрование Хасса не может быть применено из-за возможности пиролиза, способ Грундмана не пригоден вследствие низкой температуры кипения этих углеводородов. Для таких углеводородов Гейзелер разработал изящный способ нитрования в присутствии четырехокиси азота под давлением при 160—170° [28]. [c.126]

    Из низкомолекулярных парафиновых углеводородов, содержащих фтор и хлор, наиболее важное значение имеют фреон-12 (дихлордифторметан) и фреон-22 (монохлордифторметан). Фреон-12 будет рассмотрен ниже (см. стр. 211) хлордифторметан получают действием фтористого водорода на хлороформ в присутствии фтористой сурьмы. Он имеет важное промышленное зна-чение, так как при. пиролизе в платиновой трубке превращается в тетрафторэтилеп и хлористый водород [,146]  [c.203]

    В продуктах реакции газофазного нитрования парафиновых углеводородов до сего времени не найдены динитросоединения, вероятно, вследствие того, что при высокой температуре реакции тотчас же наступает пиролиз ди- и полинитросоединений. После достаточно точного изучения техники газофазного нитрования и переработки продуктов реакции Данциг и Хэсс [100] попытались путем прямого нитрования парафинового углеводорода специфического строения изолировать динитросоединения. Для этой цели они нитровали в газовой фазе при температуре 408—410° парафиновый углеводород с двумя третичными атомами водорода, а именно 2,3-диметилбутан (СНз)2СН — СН (СНз)2, в следующих условиях 68%-ная азотная кислота в виде тщательной смеси с изопропилом, подаваемой в апаратуру при 408—410°, продолжительность реакции 1,2 сек. и молярное отношение углеводород ННОз, равное 1,6 1. Превращение за один проход через аппаратуру, одинаковую с аппаратурой для нитрования пентана, составляет в расчете на [c.293]

    При длительном крэкинге олефинов под давлением имеет место заметное образование нафтеновых углеводородов. Недавние исследования Ь Грозненском нефтяном институтенафтенов крэкинга, возникающих при пиролизе парафиновых углеводородов, показали, что эти нафтены не дегидрогенизуются при пропускании их над платиной и следовательно они относятся не к шестичленному, а вероятно к пятичленному и быть может к четырехчленному типу. Данные ъ пользу этого заключения см. также у А. Петрова, в дополнениях к русскому изданию книги П. Сабатье Катализ в органической химии .  [c.258]

    Поставщиками олефинов на таких заводах являются главным образом установки пиролиза процессы термического крекинга и коксования значительно уступают им в этом отношении. Сырьем для процессов пиролиза служат сухие газы нефтепереработки, низкооктановые газовые бензины, рафинаты с установок по извлечению ароматических углеводородов из катализатов риформинга. Производство ароматических углеводородов осуществляется на специальных установках каталитического риформинга. Нормальные парафиновые углеводороды получают с установок карбамидной депарафинизации дизельных топлив, а изопарафиновые — с установок изомеризации нормальных парафиновых углеводородов (бутана, пентана и др.). Циклогексан получают либо четкой ректификацией из легкого бензина, либо гидрированием химически чистого бензола. [c.152]

    Олефины условно можно разделить на низшие (Сг—С5) и высшие (Сб—С20). Наибольшее распространение в качестве алкилирующих агентов нашли этилен и пропилен. Эти олефины образуются при процессах переработки нефти и газов крекинге, пиролизе, риформинге, коксовании. Состав нефтезаводских газов различных процессов представлен в табл 1.4. Наибольший выход низших олефинов образуется при пиролизе парафиновых углеводородов Сг—С4 с утяжелением сырья выход этилена падает и растет выход олефинов С4—С5. [c.16]

    Сырье. Нормальные парафиновые углеводороды дают при пиролизе наибольший выход этилена. Рассмотрим влияние их молекулярной массы на выход продуктов пиролиза. Примем следующие упрощающие предположения из молекулы н- парафина образуются только вторичные радикалы, и образование всех возможных радикалов равновероятно первичные радикалы с числом атомов, углерода больше пяти До раопада изомеризуются во вторичные со свободной валентностью у пятого углеродного атома, например  [c.100]

    Сырьем для получения нафталина служат высоко-ароматизированные фракции, выделенные из дистиллятов каталитического риформинга, крекинга, пиролиза и других продуктов и содержащие в основном бицикли-ческие ароматические углеводороды. В связи с тем что нафталин с парафиновыми и нафтеновыми углеводородами образует азеотропные смеси [12], температуру начала кипения исходного сырья обычно выбирают около 200° С. В сырье не должно содержаться трициклических ароматических углеводородов, в противном случае в продуктах реакции будет накапливаться высококипя-щий остаток. Поэтому конец кипения сырья для производства нафталина не должен быть выше 300° С. Другое требование, предъявляемое к сырью, — максимальное содержание производных нафталина при минимальном среднем молекулярном весе углеводородов во фракции. Однако получение высокоароматизированных фракций из нефтяных продуктов с малым содержанием парафиновых углеводородов не всегда возможно поэтому при проведении процесса гидродеалкилирования применяют специальные методы, позволяющие уменьшить деструкцию парафиновых углеводородов в газообразные продукты. Содержание сернистых соединений в исходном сырье также оказывает влияние на схему производства нафталина и на выбор метода гидродеалкилирования. [c.295]

    Например, данные об углеводородном составе бензинового дистиллята позволяют еудить о его ценности и как топливного компонента, и как сырья для термокаталитических процессов. Высокое содержание парафиновых углеводородов нормального строения свидетельствует о низком октановом числе бензина и о пригодности его как сырья пиролиза для получения олефинов. Значительное содержание к-пентана и к-гексана дает возможность получать из них изопентан и изогексан — высокооктановые компоненты бензинов. Количественные данные о распределении по бензиновым фракциям тяжелых, детонирующих в двигателе нормальных парафиновых углеводородов позволяют сделать вывод о целесообразности применения молекулярных сит или четкой ректификации для частичного или полного удаления этих детонирующих центров . О значении данных по групповому химическому составу бензиновых фракций, предназначенных для каталитического риформинга, говорилось ранее. [c.75]

    В зависимости от исходного сырья и условий пиролиза можно получать либо полностью ароматизированные дистилляты, либо тяжелые смолы с небольшим содержанием парафиновых и циклоалкановых углеводородов. В последнем случае возможно применение технологических приемов, предложенных в работах [143, 144] для переработки экстрактов из газойлей каталитического крекинга. Экстракты, содержащие 18—20% нафтеновых и парафиновых углеводородов, получены при экстракции из исходных газойлей водным раствором пиридина или фенола. Высокотемпературная гидрогенизация в присутствии водяного пара при 4 МПа и 650 °С на алюмокобальтмолибденовом катализаторе приводила к разрушению циклоалканов и парафинов, а также к деструктив- [c.191]

    Принципиальная схема получения бензола методом каталитического гидрогенизационного деалкилирования толуола представлена на рис. 42. Каталитическое деалкилирование гидроочищенно-го бензина пиролиза, содержащего значительные количества парафиновых углеводородов, сопровождается повышенным выделением тепла в результате гидрокрекинга последних (процесс Пиротол ). В связи с этим необходимо ввести некоторые конструктивные изменения в технологическую схему, не затрагивающие существа процесса. [c.193]


Смотреть страницы где упоминается термин Парафиновые углеводороды пиролиз: [c.46]    [c.94]    [c.36]    [c.342]    [c.50]    [c.118]    [c.414]    [c.67]    [c.60]    [c.346]    [c.152]   
Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.35 , c.67 , c.93 ]

Химия и технология моноолефинов (1960) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте