Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахара в липидах

    В данной главе рассмотрено применение колоночной хрома тографии для разделения различных классов фосфорорганиче-ских соединений, за исключением фосфорилированных сахаров, липидов, нуклеотидов и пестицидов, хроматографии которых пО священы отдельные главы. [c.161]

    Необходимо учитывать, что некоторые вещества, например галогены, многие сахара, липиды, белки и пептиды мешают количественному определению ДНК дифениламиновым реактивом. [c.41]

    Молоко является ценнейшим пищевым продуктом, так как в его состав входят такие важнейшие питательные вещества, как белки (казеиноген, молочный альбумин и молочный глобулин), углеводы (молочный сахар), липиды, минеральные соли и ряд витаминов. [c.484]


    Простая молекула (мономер) Гомеополярные связи 50—200 1 нм Аминокислоты, пурины, порфирины, сахара, липиды [c.128]

    Использование радиоактивных изотопов в сочетании с иммунологическими методами исследования позволяет исключительную избирательность последних реализовать для ничтожно малых количеств биополимеров. Чувствительность радиоиммунных методов позволяет обнаруживать и определять нанограммовые, а иногда и пикограммовые количества индивидуальных белков и гормонов пептидной природы на фоне колоссального избытка родственных им молекул. Избирательность при работе с нуклеиновыми кислотами пока что заметно ниже (при том же уровне чувствительности метода), но прогресс и здесь явно заметен. Радиоиммунные методы широко используются для исследования-сахаров, липидов и других биологически активных соединений, однако эти приложения выходят за рамки настоящей книги. [c.269]

    Механизм всасывания в кишечнике сахаров, липидов, жироподобных веществ, белков, витаминов, воды, электролитов. [c.137]

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]

    ОПИЙ сложная смесь сахаров, белков, липидов, смол, восков, пигментов, воды и т д. В его состав входят более 50 активных алкалоидов, составляющих 10—20% обшей массы. Их относительные количества зависят от условий произрастания, климата, сорта и возраста растений и т.п. [c.7]

    Другие примеры разделений на нормальных фазах — групповые разделения алканов или липидов, а также разделение стероидов, сахаров и жирорастворимых витаминов. [c.281]


    Так, например, достигнуты большие успехи в извлечении растительных белков. Этому предшествовали в первую очередь работы по экстрагированию липидов (масла и жиры), а также извлечению углеводов (сахара и крахмалы). Сохраняет актуальность и процесс разделения компонентов сельскохозяйственного сырья для их более рационального использования в пищевой промышленности в форме изолятов, самих по себе функционально привлекательных, включаемых в состав различных смесей. [c.6]

    Принципиальный интерес представляет фотометрическое детектирование при А, = 195 нм. В этой области спектра все молекулы с гетероатомами и ненасыщенными группами сильно поглощают УФ-излучение благодаря п о - и я -> я -переходам. Особенно сильно при X = 195 нм поглощают ароматическиэ соединения. УФ-детектор при X = 195 нм можно считать универсальным детектором для жидкостной хроматографии, подобно рефрактометрическому, однако в отличие от него УФ-детектор позволяет работать в условиях градиента растворителя, кроме того, он быстрее выходит на рабочий режим и обладает большей чувствительностью, чем рефрактометрический детектор. Указанный детектор нашел применение при анализе сахаров, липидов, ненасыщенных углеводородов и полиэтиленгликолей. [c.97]

    Переход от уровня ковалентносвязанных макромолекул к упорядоченному надмолекулярному уровню осуществляется при участии элементарных звеньев — аминокислот, нуклеотидов, сахаров, липидов, которые можно назвать биологическими молекулами. Исходной посылкой нашей работы явилась идея [c.8]

    Дж. Хантом и Э. Дегенсом был исследован и.с.у. биологических фракций планктона, отобранного у берегов Перу и Эквадора на глубине 200 м. Для 18 образцов были выделены липиды, пектин, углеводы, сахара, аминокислоты, лигнин и определен их и.с.у. Исследования показали, что и.с.у. одноименных биохимических компонентов образцов планктона не одинаков и связан в некоторых случаях с влиянием температуры. [c.190]

    Для любого процесса в живом организме необходима энергия, которая получается при протекании химических реакций внутри клетки. Основу биохимических процессов составляют химические превращения, в частности реакции окисления и восстановления. Биологическое окисление служит, таким образом, основным источником энергии для ряда внутренних биологических изменений. Многие из протекающих при таком окислении реакции заключаются в сжигании компонентов пищи, например сахаров или липидов, что дает энергию, используемую затем для осуществления таких важных процессов л<изнедеятельности, как рост, размножение, поддержание гомеостаза, мускульная работа и выделение тепла. Эти превращения включают также связывание кислорода дыхание — это биохимический процесс, в результате которого молекулярный кислород восстанавливается до воды. При метаболизме энергия сохраняется аденозинтрифосфатом (АТР), богатым энергией соединением, которое, как известно, служит универсальным переносчиком энергии. [c.14]

    Цереброзиды, или гликосфингозиды, являются сложными липидами, содержащими сфингозин, жирную кислоту и сахар (О-глюкозу или Д-галактозу) они отличаются от большинства сложных липидов тем, что не содержат фосфорной кислоты. Типы связи между адономер-ными структурными единицами в цереброзидах показаны в приводимой ниже формуле цереброзида  [c.635]

    Любой вирус (варион) состоит из нуклеиновой кислоты (НК), защищаемой капсидой (цилиндрической или сферической оболочкой белкового типа, иногда с включением липидов и сахаров). Капсида выполняет также функцию взаимодействия с клетками чужого организма, способствуя проникновению вирусной НК внутрь клетки-хозяина и запуску там синтеза новых вирусных молекул. В случае ВИЧ сложность заключается в том, что в чужом организме он встраивается в оетки самой иммунной системы (в лейкоциты, фагоциты, лимфоциты), призванной бороться с патогенными микроорганизмами. И как только зараженный организм включает в действие защитную иммунную систему, вместе с размножением собственных иммунных клеток начинается бурный рост числа ВИЧ, и клетка-хозяин теряет генетический контроль над биопроцессами. Иммунные силы (сопротивляемость) организма, таким образом, слабеют, и у больных СПИДом возрастает вероятность заражения другими инфекциями - туберкулезом, пневмонией, лейкозами и т.д. [c.152]

    Лектинами называют белки или гликопротеиды растительного (фитогемагглютинины) или животного происхождения, проявляющие более или менее избирательное сродство к остаткам индивидуальных сахаров или групп сходных сахаров. Разнообразие остатков сахаров, часто встречающихся в природе, невелико, но они входят в салшх различных колхбинациях во множество биологически важных соединений полисахаридов, мукополисахаридов, гликопротеидов, глико-липидов и др. Многие из этих соединений участвуют в построении клеточных мембран. Подобно антителам, лектины обладают более чем одним участком связывания сахаров, что обусловливает их сио-собностъ агглютинировать эритроциты и другие клетки, отбирая их по классам, напрпмер опухолевые или эмбриональные. Используемые в качестве аффинных лигандов, лектины позволяют решать важные задачи очистки содержащих сахара компонентов плазмы, гликопротеидов клеточных мембран и др. [c.363]

    Наиболее распространенным методом экстракции липидов является метод Фолча. Экстракцию проводят смесью хлороформ—метанол (2 1) из расчета 20 частей экстрагирующей смеси на одну часть ткани. Метод позволяет выделить 90—95% всех клеточных липидов. Смеси растворителей, содержащие спирт, экстрагируют также нелипидные вещества (сахара, аминокислоты, соли и т. д.) Для удаления нели-пидных примесей экстракт липидов промывают водон или слабыми солевыми растворами. Однако это приводит к частичной потере кислых липидов. Очистку экстракта можно провести также гель-фильтрацией на сефадексе. [c.68]


    Текатор — высокочувствительный рефрактометр, хроматограф для Сахаров и липидов. [c.200]

    ИСКУССТВЕННАЯ ПИЩА, пищ. продукты, к-рые олуча -ют из разл. пищ. в-в (белков, аминокислот, липидов, углеводов), предварительно выделенных из прир. сырья или полученных направленны.м синтезом из минер, сырья, с добавлением пищевых добавок, а также витаминов, минер, к-т, микроэлементов и т. д. В качестве прир. сырья используют вторичное сырье мясной и молочной пром-сти, семена зерновых, зернобобовых и масличных культур и продукты их переработки, зеленую массу растений, гидро-бионты, биомассу микроорганизмов и низших растений прн этом выделяют высокомол. в-ва (белки, полисахариды) и иизкомолекулярные (липиды, сахара, аминокислоты и др ) Низкомол. пищ. в-ва м. б. получены также микробиол. синтезом из глюкозы, сахарозы, уксусной к-ты, метанола, углеводородов, ферментативным синтезом из предшественников и орг. синтезом (вкл очая асимметрич. синтез для оптически активных соед ). Высокомол. в-ва должны обладать определенными функциональными св-вамн, такими, как р-римость, набухание, вязкость, поверхностная активность, способность к прядению (образованию волокон) и гелеобразованию, а также необходимым составом и способностью перевариваться в желудочно-кишечном тракте. Низкомол. в-ва химически индивидуальны или являются смесями в-в одного класса в чистом состоянии их св-ва не зависят от метода получения. [c.273]

    С помощью Л. X, удается выделять и разделять соед., склонные к координации с ионами металлов, в присут. больших кол-в минер, солей и некоординирующихся в-в. Напр, с использованием иминодиацетатной смолы с ионами Си из морской воды выделяют своб. аминокислоты На катионитах с ионами Ре разделяют фенолы, с ионами Лg -сахара. На карбоксильных катионитах с N1 разделяют амины, азотсодержащие гетероциклы, алкалоиды. На силикагеле с нанесенным слоем силиката Си в водно-орг. среде в присут. ННз проводят быстрый анализ смесей аминокислот и пептидов, причем элюируемые из колонки комплексы легко детектируются спектрофотометрически. На высокопроницаемых декстрановых сорбентах с иминодиацетатными группами, удерживающими ионы N1 или Си- , селективно выделяются из сложных смесей индивидуальные белки и ферменты, содержащие иа пов-сти своих глобул остатки гистидина, лизина или цистеина. Силикагели с фиксированными на пов-сти инертными т/)ис-этилендиа.миновыми комплексами Со используют для т. наз. внешнесферной Л. х. смесей нуклеотид-фосфатов. Методом газовой Л. х. с помощью фаз, содержащих соли Ag , разделяют олефины, ароматич. соед., простые эфиры. Тонкослойная Л. х. на носителях, пропитанных солями Ag , применяется для анализа стероидов и липидов. [c.590]

    Так же, как соединения фосфатов уридина и гуанозина с сахарами, определяют метаболизм сахаров, очень важное значение для обмена липидов в организме имеют производные цитидиндифосфата. [c.240]

    Цереброзиды и ганглиозиды — это сфингозинсодержащие липиды (сфинголипиды), в которых полярным компонентом является не фосфат, а сахар. Другие гликолипиды, обнаруженные в бактериях и зеленых растениях, содержат глицерин и жирные кислоты, а также а-О-га-лактозу, глюкозу и маннозу. В хлоропластах в большом количестве содержится специфический сульфолипид (рис. 2-32). [c.151]

    Характерная особенность биосинтеза липидов заслуживает того, чтобы прокомментировать ее здесь. Холин и этаноламин активируются аналогично тому, как это имеет место в случае сахаров [уравнение (11-26). Например, холин может быть фосфорилирован с использованием АТР [уравнение (11-26), стадия а], а образующийся фосфорилхолин может далее превращаться в цитидиндифосфатхолин [уравнение (11-26), стадия б]. В результате переноса фосфорилхолина из последнего соединения на подходящий акцептор образуется конечный продукт [уравнение (11-26), стадия в]. Следует отметить отличие этих реакций полимеризации от синтеза полисахаридов, которое состоит в том, что вступление в реакцию сахаронуклеотида сопровождается отщеплением целого нуклеозиддифосфата, тогда как в реакциях DP-холина и DP-этанолами-на отщепляется СМР, а одна фосфатная группа остается в конечном продукте. То же самое имеет место в случае синтеза бактериальных тейхоевых кислот (гл. 5, разд. Г, 2). Сначала образуется DP-глицерин или DP-рибит, а после этого происходит полимеризация с отщеплением СМР и образованием чередующегося сахарофосфат-алкогольного полимера [28а]. [c.494]

    Развитие ферментативных процессов при созревании мяса приводит к накоплению в нем веществ, влияющих на вкус и аромат готовых мясных продуктов. Этими соединениями являются продукты распада и пептидов (глютаминовая кислота, треонин, серосодержащие аминокислоты и др.), нуклеотидов (инозинмонофосфорная кислота, инозин, гипоксантин, рибоза), углеводов (глюкоза, фруктоза, молочная, пировиноградная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатин и другие азотистые экстрактивные вещества. Среди летучих компонентов, определяющих аромат продуктов из созревшего мяса, обнаружены жирные кислоты, карбонильные соединения, спирты, эфиры. Существенную роль в формировании запаха играют серосодержащие соединения, предшественниками которых являются цистеин, цистин и метионин. На вкус и аромат мясопродуктов значительно влияют сахароаминные реакции или реакции неферментативного потемнения при тепловой обработке мяса, в которых участвуют редуцирующие сахара, аминокислоты или белки, а также альдегиды, возникающие в результате превращения жирных кислот. [c.1131]

    Процессы производства изолятов часто базируются на сырье, бедном липидами. Действительно, они позволяют легче изолировать белки, исключая другие, практически нерастворимые соединения (крахмал, клетчатка), или, наоборот, превосходно растворимые (сахара, минеральные вещества, небелковый азот). В зависимости от характера сырья и содержания в нем масла (остаточного в случае с шротами, нативного при переработке крахмалистых семян) конечные концентрации липидов в изолятах могут быть заметными и представлять основную часть небелковых соединений в изоляте. [c.459]

    Липиды, содержащие остатки сахаров, называют гликолипи-дами липиды, содержащие остаток фосфорной кислоты, — фосфо-липидами-, липиды, содержащие сульфогруппу,— сульфолипидами. [c.70]

    Химия углеводов занимает одно из ведущих мест в истории развития органической химии. Тростниковый сахар можно считать первым органическим соединением, вьщеленным в химически чистом виде. Произведенный в 1861 г. А.М. Бутлеровым синтез (вне организма) углеводов из формальдегида явился первым синтезом представителей одного из трех основных классов веществ (белки, липиды, углеводы), входящих в состав живых организмов. Химическая структура простейших углеводов бьша выяснена в конце XIX в. в результате фундаментальньгх исследований Э. Фишера. Значительный вклад в изучение углеводов внесли отечественные ученые A.A. Колли, П.П. Шорыгин, Н.К. Кочетков и др. В 20-е годы нынешнего столетия работами английского исследователя У. Хеуорса бьши заложены основы структурной химии полисахаридов. Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением. [c.169]

    Тканевое дыхание и биологическое окисление. Расиад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к вьщелению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом  [c.306]

    Синтетические процессы в клетках — синтез белков, нуклеиновых кислот, пуринов, пиримидинов, липидов, сахаров и др. представляют собой, как правило, эндергонические процессы, т.е. процессы, требующие затраты свободной энергии. Биосинтез осуществляется в открытой термодинамической системе— клетке в результате сопряжения с экзергоническими процессами гидролиза АТФ и окисления НАД-Н, НАДФ-Н и ферредоксина, в ходе которых освобождается энергия. Б конечном счете восстановленные коферменты также возникают за счет АТФ — наиболее универсального аккумулятора энергии (глюкоза фосфорилируется АТФ). Основные биосинтетические реакции идут с участием ферментов киназ или синтетаз. [c.108]

    В предыдущих разделах были обсуждены особенности фармакокинетики флавонгликозидов и агликонов, а также влияние остатка сахара у гиперозида на объем распределения и время удержания лекарственного вещества в организме животного по сравнению с флавоноидами агликонами кверцетином и мирицетином. В этом контексте байкалин является флавоноидом с более усложненной структурой, т.к. кроме остатка сахара имеет остаток глюкуроновой кислоты, за счет которого способен образовывать комплексы со многими фрагментами белков и липидов мембран клеток крови и тканей. Следует отметить, что [c.609]

    Неионообменная порошковая целлюлоза применяется в качестве носителя при распределительной хроматографии и электрофорезе на колонках и в слоях. Целлюлоза используется для хроматографического разделения сахаров, глицеридов, спиртов, фенолов, аминов, карбоновых и аминокислот, пептидов, белков, нуклеиновых кислот, уроновых кислот, липидов, алкалоидов, антибиотиков, гормонов, ферментов, витаминов, гербицидов и инсектицидов, неорганических ионов, красителей, углеводородов и других веществ. Применяется также для электрофореза белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов. [c.127]

    Содержание р-биотина доходит до 39 лгг в 1 г. Кроме того, пыльца содержит провитамины (каротин и др.), 15% и более сахаров (до 7,4% глюкозы и 14,6% фруктозы), липиды (0,9—14%, чаще всего 4%), пигменты, ферменты (диастатический и др.), фитогормоны , соли, антибиотики большой активности. [c.124]

    На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т. д.) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств при соблюдении технологии не происходит деструкции аминокислот. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям. При интенсивной тепловой обработке усвояемость снижается. Такое же влияние оказывет наличие в продуктах редуцирующих сахаров и продуктов окисления липидов за счет их взаимодействия с белковыми компонентами пищи. [c.20]


Смотреть страницы где упоминается термин Сахара в липидах: [c.367]    [c.212]    [c.382]    [c.247]    [c.29]    [c.262]    [c.557]    [c.134]    [c.99]    [c.578]    [c.609]    [c.240]    [c.47]    [c.58]   
Биохимия Том 3 (1980) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте