Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклопропан водородом

    Циклизация с внутримолекулярным выделением НХ. Непосредственным развитием способа Перкина является метод внутримолекулярного выделения галоидводорода при помощи основания из молекулы, имеющей активный водород и галоид в соответствующем месте. Вторая стадия метода Перкина типична для серии циклопропанов и обладает характерной для нее ограниченной областью применения  [c.444]


    Циклобутан значительно менее реакционноспособен, чем циклопропан, и ближе по свойствам к циклопентану и цикло-гексану. Он не реагирует с размыканием цикла ни с галогенами, ни с галогеноводородными кислотами. Однако при пропускании в токе водорода над никелем циклобутан также присоединяет водород, хотя при более высокой температуре  [c.476]

    Ш. Укажите реагенты, с которыми может реагировать циклопропан. а. Бром б. Бромистый водород в. Водород (катализатор) г. Озон д. Серная кислота [c.62]

    Таким образом, наибольшее напряжение следует ожидать в циклопропане. Это напряжение, одиако, частично снимается за счет того, что гибридизованные орбитали атома углерода перекрываются под углом, образуя изогнутые (банановые) связи (рис. 20). Такое перекрывание недостаточно эффективно, в связи с чем изогнутые связи занимают промежуточное положение между а- и я-связями. Этим объясняется склонность циклопропана к реакциям присоединения, хотя в этом отношении он пассивнее этилена. О частичном --характере атомов углерода в молекуле циклопропана свидетельствует также повышенная протонная подвижность атомов водорода. [c.135]

    Следующая реакция является одним из примеров синтеза циклопропанов путем внутримолекулярного дегидрогалоидирования соединений с реакционноспособным водородом в а-положении  [c.8]

    Из производных с малым циклом в медицине используют лишь незамещенный циклопропан. Он является малотоксичным наркотическим средством, применяемым для ингаляционного наркоза (общая анестезия в смеси с кислородом). В промышленности циклопропан получают из аллилхлорида присоединением бромистого водорода с последующим дегидрогалогенированием образовавшегося 1-бром-З-хлорпропана в присутствии цинка  [c.47]

    Эта энергия деформации циклопропана и обусловливает его повышенную по сравнению с циклогексаном реакционную способность. Циклопропан реагирует с водородом при 80 °С в присутствии катализатора (тонкодисперсной платины)  [c.188]

    ЦИКЛОАЛКАНЫ. Циклопропан, средство для ингаляционного наркоза (т. кип. —33 С), должен иметь плоскую структуру, поскольку любая плоскость определяется тремя точками, а кольцо содержит всего три атома углерода. Каждый из трех атомов водорода по одну сторону от плоскости кольца занимает т/>акс-положение по отношению к каждому атому водорода, находящемуся по другую сторону плоскости кольца. Любые два атома водорода, расположенные по одну сторону плоскости кольца, находятся в цис-положении и заслоняют друг друга. Вообще термин цис означает по одну сторону , а транс — по разные стороны . [c.258]

    Для удобства алифатические кольца часто изображают в виде простых геометрических фигур циклопропан — треугольником, циклобутан — квадратом, циклопентан — пятиугольником, циклогексан — шестиугольником и т. д. При этом подразумевается, что у каждого из углов фигуры находится по два атома водорода, если только не указано наличие других групп. [c.265]


    Циклобутан реагирует с водородом в присутствии катализатора с образованием н-бутана, однако для этого требуется более высокая температура (200 °С), чем для гидрирования циклопропана (80 °С). Циклобутан не вступает в реакцию с остальными реагентами, под действием которых раскрывается циклопропановое кольцо. Таким образом, циклобутан вступает в реакции присоединения труднее, чем циклопропан, а последний — труднее, чем пропилен. Однако примечательнее всего сам факт, что циклоалканы вообще вступают в реакции присоединения. [c.269]

    Кроме углового напряжения в циклических соединениях существует напряжение, связанное с тем, что атомы водорода находятся частично или полностью в заслоненных (см. стр. 510 сл.) положениях в циклопропане, циклобутане и циклопентане каждый атом водорода практически соприкасается с двумя соседними. Для циклопропана к энергии углового напряжения добавляется энергия взаимного отталкивания трех пар атомов водорода. Б циклопропане каждый углерод связан с двумя другими и невалентных взаимодействий атомов углерода друг с другом нет. Иначе обстоит дело в случае циклобутана, где помимо углового напряжения ж энергии взаимодействия четырех пар атомов водорода существует некоторое дополнительное напряжение, связанное со взаимодействием между первым и четвертым атомами углерода, расстояние между которыми равно всего 2,2 А. Теоретический расчет суммы всех напряжений в циклобутане приводит к цифре, которая намного превосходит экспериментальную величину, полученную из термохимических данных. Поэтому в настоящее время принято считать, что -в циклобутане один из атомов цикла несколько выдается над плоскостью трех остальных. Такой выход из плоскости уменьшает общую энергию циклобутана. Напряжение моле- [c.526]

    На рассеянном дневном свету хлор замешает в циклопропане водород. Образующийся при этом м о и о х л о р ц и к л о п р о п а и представляет собс1Й приятно пахнущую жидкость с т. к ии. 43°. [c.780]

    В работах Бэрвелла с сотр. [94—96 ] исследована активность и селективность серии катализаторов Р1/8Юг в реакциях гидрогенолиза циклопропана и метилциклопропана при 0°С и гидрирования пропилена при —57°С [95]. Все реакции структурно чувствительны в изученных условиях скорость реакции зависит от содержания Pt на носителе, тогда как энергии активации для этих трех реакций достаточно близки. Показано [96] влияние предварительной обработки катализаторов Pt/Si02 на их активность и селективность в ходе гидрогенолиза метилциклопропана. Число оборотов на каждом из исследуемых катализаторов сильно изменялось в зависимости от условий обработки водородом, температура которой составляла 25—480 °С. Обработка при комнатной температуре обеспечивала высокую активность катализаторов, при 200 °С активность проходила через минимум и с возрастанием температуры реакции выше 250 °С снова повышалась. Таким образом, полученные результаты показывают, что структурная чувствительность реакции гидрогенолиза циклопропанов в присутствии катализаторов Pt/Si02 в значительной степени зависит от условий их предварительной обработки. [c.105]

    Циклопропан можно фторировать с помощью реакции с безводным фтористым водородом при комнатной или более низкой температуре, при этом получается к-пропплфторид с выходом 80% [15]. При более низких температурах основным продуктом реакции является производное изопропила. Реакция циклопропана с самим фтором или с фторидами металлов ведет к образованию продуктов деструкции, при этом не удается выделить пи одного из фторциклопронапов. Фторированрхе циклобутана почти ие исследовалось. [c.75]

    Известно, что относительная стабильность циклов нарастает при увеличении в них числа углеродных атомов с трех до шести. Циклопропан подвергается изомеризациям, связанным с разрывом трехчленного цикла, превращаясь в пропилен. Так, например, по С. Та-натару [34], циклопропан при обычной температуре в присутствии платины и влаги воздуха через б месяцев, а при 100° через 5 суток на 45% превращается в пропилен. При пропускании циклопропана над железными стружками при 600" образуется 60—65%, а над А12О3 при 380°—30% пропилена. По Нефу [35], механизм образования пропилена заключается в разрыве цикла и стабилизации образовавшегося бирадикала в пропилен путем перемещения одного атома водорода  [c.570]

    Циклопропан и циклобутан можно превратить в парафины путем гидрирования для этого их смесь с водородом пропускают над нагретым порошкообразным никелем (Вильштеттер). Гидрирование циклопропана начинается уже при 80° и быстро протекает при 120° для восстановительного расщепления циклобутанового кольца и образования из него бутана требуется более высокая температура, 180°, а поли-метиленовые кольца циклопентана, циклогексана и циклооктана еще более устойчивы (иапример, по Зелинскому, циклоиентан гидрируется с расщеплением пятичленного кольца лишь при 300—310 ), Если при этом учесть, что этилен гидрируется в присутствии N1 уже при 40°. то, исходя из этих различий, не трудно вывести зависимость между устойчивостью таких кольцевых систем и легкостью их расщепления  [c.775]

    Все эти кетоны, если они з-же образовались, оказываются очень устойчивыми. Например, циклогептадеканон при нагревании. до 40СГ в незначительной степени обугливается, но в основном остается неизмененным прн нагревании с соляной кислотой до высокой температуры тоже не происходит значительного разложения. Циклоалканы, полученные из циклоалкаионов, были испытаны па отношение к иодистому водороду при высокой температуре. В то время как циклопропан (стр. 780) и циклобутан (стр. 783) в этих условиях претерпевали расщепление кольца, многочленные циклические углеводороды при обработке иодистоводородной кислотой не изменялись. Следовательно, 10—30-член-ные углеродные циклические системы очень устойчивы. Поэтому можно считать, что их кольцевые атомы не находятся в одной плоскости, а расположены в пространстве таким образом, что образуют циклы, более или менее свободные от напряжений. [c.923]


    Общая формула С Н . В циклоалканах цепочка углеродных атомов замкнута в цикл (кольцо). Названия циклоалканоа производятся от названий соответствующих алканов прибавлением приставки цикла-. Например, если цикл образован тремя атомами углерода С,Н (трехчленный цикл), то соответствующий алкан будет пропаном, а циклоалкан - циклопропаном. Пятичленный цик-лоалкан называется циклопентаном. При изображении циклоал-канов часто не указываются атомы углерода и водорода. Углероды находятся в вершинах многоугольников, а число атомов водорода определяется исходя из того, что углерод четырехвалентен. Таким же образом часто изображают молекулы всех органических соединений. Каждая вершина ломаной линии и многоугольника обозначает атом углерода. Черточками обозначают С-С связи, а число атомов водорода при каждом углероде определяется исходя из че-тырехвалентности углерода. [c.183]

    П. Каково конформационное положение каждой пары соседних атомов водорода в циклопропане а. Заслоненное б. Заторяоженное в. Скошенное [c.62]

    Присоединение к циклопропанам может идти по любому из четырех обсуждавшихся в настояш,ей главе механизмов, но наиболее важен механизм с электрофильной атакой [106]. Реакции присоединения к замеш,енным циклопропанам обычно подчиняются правилу Марковникова, хотя известны и исключения часто эти реакции вообще характеризуются низкой региоселективностью. Применение правила Марковникова к таким субстратам можно продемонстрировать на примере взаимодействия 1,1,2-триметилциклопропапа с НХ [107]. Согласно правилу Марковникова, электрофил (в данном случае Н+) должен атаковать атом углерода, соединенный с большим числом атомов водорода, а нуклеофил должен присоединяться к атому углерода, который лучше стабилизирует положительный заряд (в данном случае скорее к третичному атому углерода, чем [c.158]

    Эту перегруппировку называют еноленовой перегруппировкой, гомодиенильным [, 5 -сигматропным сдвигом водорода (см. реакцию 18-33) и [, 5 -гомосигматропной перегруппировкой. Она заключается в сдвиге трех электронных пар через семь атомов. Найдено, что эта аномальная перегруппировка Кляйзена носит общий характер в результате этой перегруппировки происходит взаимопревращение енольных форм в системах типа 129 и 131, при этом в качестве интермедиата образуется замещенный циклопропан 130 [485]. [c.209]

    Своеобразные свойства циклопропанового кольца, как уже упоминалось, связывают с особым состоянием гибридизации составляющих его углеродных атомов, с наличием банановых связей в циклопропане. Эти же причины оказывают определенное влияние и на стереохимию реакций замещения в циклопропане. Так, радикальный процесс замены брома на водород (обычно протекающий с рацемизацией) в случае оптически активных циклопропилбромидов протекает с сохранением конфигурации, хотя и сопровождается значительной рецемизацией [23]  [c.329]

    Химические превращення циклопропана показывают, что этот углеводород является несколько менее реакционноспособным, чем этилен. Однако он довольно легко подвергается каталитическому гидрированию до н-пропана его кольцо разрывается также при реакциях с бромом, бромистым водородом или серной кислотой. Присоединение бромистого водорода к замещенным циклопропанам протекает по правилу Марковникова раскрытие кольца происходит между углеродными атомами с наименьшим и наибольшим числом алкильных групп, причем галоид при гоединяется к наиболее алкилированному атому углерода  [c.12]

    Циклобутан значительно менее реакцнонноспособен, чем циклопропан. Он не только нечувствителен по отношению к перманганату и озону, но также устойчив к дигствню брома и иодистого водорода при комнатной те.мпературе. Правда, его кольцо размыкается при гидрировании, однако это происходит при более высокой температуре, чем в случае циклопропана  [c.32]

    Пример 6.6. Циклопропан имеет формулу СзНб. Другое вещество (пропилен) имеет точно такую же формулу. Какова его структурная формула Сколько атомов водорода из шести лежат в плоскости трех атомов углерода  [c.143]

    Модифицированная р -гибрпдизация и банановые связи не являются единственно возможным способом описания характера и свойств связей в циклопропане. Так, повышенную кислотность атомов водорода в циклопропане можно предсказать и на основании других представлений. [c.267]

    Как и в случае реакции Фишера, на первой стадии циклизации азин превращается в диенгидразин. Это превращение обратимо, причем равновесие сдвинуто в сторону азина. Щелочной катализатор, не сдвигая само равновесие, заметно увеличивает скорость таутомерного превращения. Фенильная группа также способствует увеличению кислотности водорода соседней метиленовой группы и увеличивает вероятность образования енгидразинного таутомера. На следующей стадии происходит сигматропный [3,3]-сдвиг и затем (через несколько стадий, сопровождающихся элиминированием аммиака) образуется пиррольное производное. Вероятность протекания стадии образования углерод-углеродной связи как сигматропиого [3,3]-сдвига подтверждается самим фактом образования пиррольного соединения при проведении термолиза без катализатора при 300°С. Во всех случаях, кроме пирролов, были выделены и пиразолы, по-видимому, образовавшиеся по карбанионному механизму [77]. При попытке реализовать процесс для азинов жирно-ароматических кетонов нам удалось обнаружить их перегруппировку в пиразолины, сразу распадающиеся до циклопропанов [79-81] с высокими выходами. [c.85]

    Циклопропан реагирует с водородом в присутствии катализатора, давая пропан, с бромом образуется 1,3-дибромпропан, а с иодистоводородной кислотой — я-пропилиодид [c.269]

    Как уже говорилось, термодинамическая устойчивость циклов различна. Об этом можно судить до теплотам сгорания (АЯ), рассчитанным на одну метиленовую группу (табл. 53). Наибольшие теплоты соответствуют циклопропану, затем циклобутану, в которых велики искажения валентных углов (угловое напряжение) и торсионное напряжение (стр. 527). Большие циклы обладают довольно близкими значениями АЯ. Однако и здесь имеются довольно характерные отличия. Наименьшим запасом энергии из первых де< яти членов ряда обладает циклогексан. Более высокая энергия циклопентана объясняется торсионным напряжением, возникающим, как уже говорилось, в результате пространственного взаимодействия атомов водорода, которые находятся в невыгодных, заслоненных, положениях. В средних циклах (Се—С ) теплота сгорания на метиленовую группу немного больше, чем в циклогексане, вследствие другого типа напряжения, небайеровокого (взаимодействие атомов водорода, находящихся по разным сторонам кольца) с этим эффектом мы встретимся еще в разделе, специально посвященном большим и средним циклам. Наконец, энергия макроциклов наименьшая и близка к энергетическому уровню нециклических парафинов с нормальной цепью. [c.534]

    Хлористый водород присоединяется к сабинену по крайним атомам сопряженной системы циклопропан — двойная связь  [c.540]

    Циклопропан — газ, анестетик общего действия пгироко применяется при любых хирургических операциях его преимущество заключается в том, что он совершенно безвреден для организма и не вызывает неприятных последствий. Циклопропан получают в промышленных масштабах до Густавсону действием цинка на 1-хлор-З-бромпропан, который синтезируют присоединением бромистого водорода к хлористому аллилу в при- [c.540]

    Используя различные растворители, Бойкин, Тернер и Латц [70] идентифицировали карбонильные производные циклопропанов по изменениям химических сдвигов, обусловленных заместителями и атомами водорода при ароматическом кольце. [c.108]

    Скорость депротонирования С—Н-кислоты (/ i в табл. 2.7.19 к- UIносится к обратной реакции) в определенных условиях мож> но использовать как меру кинетической кислотности данной кислоты и устойчивости карбаниона, принимая, что между структурой переходного состояния депротонирования и структурой образующегося карбаниона существует близкая аналогия. К реакциям, скорость которых определяется скоростью депротонирования, относятся катализируемое основаниями галогенирование и изотопный обмен водорода. Скорости подобных реакций действительно представляют собой количественную меру кинетической кислотности, если только внутренняя рекомбинация ионных пар, включающих карбанион, в исходную С—Н-кислоту не существенна и на скорость не влияют другие специальные факторы, например пространственные эффекты в переходном состоянии. Иногда кинетическая кислотность является единственным способом оценки устойчивости карбанионов, например в случае очень слабых С—Н-кислот типа бензола или алканов. Обычно для кинетической и термодинамической кислотностей наблюдается линейное соотношение свободных энергий, и поэтому скорость депротонирования можно использовать для предсказания термодинамической кислотности. Таким путем были определены приведенные ниже величины рКа циклогептатриен 36, бензол 37, циклопропан 39, метан 40, циклогексан 45. Стабилизованные нитрогруппами карбанионы в основном образуются при депротонировании медленнее, чем это можно бы ожидать на основании величин рКл. Обычно это приписывают большой перестройке распределения электронов между переходным состоянием депротонирования и образующимся анионом [56ж]. [c.547]

    Комплексы переходных металлов, как и следовало ожидать, катализируют изомеризацию циклопропанов н родственных соединений [358—361]. В некоторых случаях скелетные перегруппировки этого типа сопровождаются переносом атохмов водорода. Так, обработка бицикло[2.1.0]пентана, например, [НЬС1(СО)2]2 приводит к циклопентепу. Первой стадией этого процесса, по-видимому, является окислительное присоединен ие по центральной углерод-углеродной связи с последующей изомеризацией в гидрид л-аллилродия и затем в л-енильный комплекс родия, распадающийся с образованием циклопентена (схема 312) [106]. [c.334]

    В молекулах окиси этилена и циклопропана (по Байеру, Карреру и многим другим) приблизительно одинаковое напряжение, и это сообщает им некоторые общие свойства. Но вместе с тем молекула окиси этилена проявляет свойства, резко отличающие ее не только от циклопропана, но и от других кислородсодержащих гетероциклов. Эти свойства не вытекают из факта наличия напряжения в молекуле окиси этилена, они как-то обусловлены значительным изменением поведения атЬма кислорода в ее молекуле по сравнению с подавляющим большинством других кислородсодержащих молекул, в первую очередь различных эфиров. В работе рассмотрены эти особенности окиси этилена. Например, циклопропан реагирует с бромистым водородом только при нагревании, а окись этилена — даже при —80 °С. Циклопропан изомеризует-ся в пропилен при температурах выше 550 °С, окись этилена изо-меризуется в ацетальдегид при температурах ниже 400 °С. Циклопропан в воде почти нерастворим н в разбавленных водных растворах не окисляется перманганатом калия даже при нагревании до 200 °С окись этилена смешивается с водой в любых отношениях и легко окисляется перманганатом калия. При 370 °С циклопропан в газовой фазе окисляется кислородом в 13 раз медленнее, чем окись этилена в тех же условиях. [c.18]


Смотреть страницы где упоминается термин Циклопропан водородом: [c.64]    [c.194]    [c.119]    [c.13]    [c.15]    [c.2161]    [c.266]    [c.267]    [c.366]    [c.366]    [c.430]    [c.364]    [c.110]    [c.671]    [c.430]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Циклопропан



© 2025 chem21.info Реклама на сайте