Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий от железа и алюминия

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    На рис. 34 приведен один из вариантов технологической схемы переработки радиоактивных отходов с применением в качестве со-осадителя ферроцианида цинка и калия. Использование этого со-осадителя особенно полезно для бедных цезием (меньше 0,001 моль/л) радиоактивных растворов [286]. Эти растворы обрабатывают [335] аммиаком до pH = 2—3, осадок гидроокиси железа вместе с примесями плутония, циркония и ниобия отфильтровывают. Фильтрат нейтрализуют едким натром до рН=12—13 и осадок диураната натрия вместе с примесями гидроокисей стронция и редкоземельных элементов удаляют. Предварительная подготовка раствора может быть осуществлена и несколько иным путем- Радиоактивный раствор нейтрализуют едким натром до pH = 7, фильтрат (после отделения гидроокисей железа, алюминия, хрома) подкисляют соляной кислотой до рН = 3,5- и пропускают через катионит (леватит 5 = 100) в натриевой форме [336]. [c.328]

    Осаждение РЗЭ в виде фторидов используется для их отделения от многих элементов. При осаждении РЗЭ из водного раствора их солей действием раствора фтористоводородной кислоты образуется аморфный слизистый, труднофильтруемый и промываемый осадок. Фторидный метод, как и оксалатный, позволяет отделить РЗЭ от железа, алюминия, титана, циркония, урана (VI), ниобия, тантала и некоторых других элементов. В ходе анализа обычно отделяют все РЗЭ от сопутствующих элементов путем осаждения в виде фторидов с последующего их осаждения в виде гидроксидов или оксалатов. Выделенное суммарное количество РЗЭ анализируют на содержание отдельных РЗЭ, используя, например, фотометрическое определение церия (IV), спектрофотометрические методы определения неодима, празеодима и т. д. (по собственному поглощению их солей), а также спектральное определение отдельных РЗЭ в их сумме. [c.198]

    Бензоилфенилгидроксиламин (БФГА) предложен как реактив для количественного определения весовым путем ряда катионов [1], в том числе меди, железа, алюминия и титана [2], циркония [3], скандия [4], ниобия [5 6], тантала [7] и др. [c.11]

    Радиоактивационным методом определяют магний в чугуне [652], алюминии [1097], цирконии, железе, меди [704], в горных породах [1282], в арсениде галлия [754], в биологических материалах [1024, 1152—1154], в воде [1160]. [c.166]

    Фтор образует мало растворимые соединения или устойчивые комплексы со многими элементами, например с бором, кремнием, титаном, торием, цирконием, железом, алюминием, щелочноземельными металлами, магнием, свинцом и редкоземельными металлами (стр. 246). В развитии объемно-аналитических [c.397]


    В качестве носителей чаще всего применяются такие соединения. Которые в дальнейшем не мешают определению или легко удаляются. Хорошими носителями для выделения следов урана являются гидроокиси многих металлов, обладающие рыхлым строением и большой поверхностью. Гидроокиси железа, алюминия, кальция, маг-йия, олова, тория, циркония и титана были рекомендованы для соосаждения с ними малых количеств урана [8, 19]. В качестве носителей для отделения следов урана могут применяться также перекись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения следовых количеств урана [126]. [c.283]

    Подобные соединения с поливиниловым спиртом образуют и соли трехвалентного железа, алюминия, олова и циркония. [c.302]

    Комплексометрический метод исключительно прост, не требует применения дорогой аппаратуры и дефицитных реактивов. Этим методом определяют содержание железа, алюминия, магния, кальция в природных и искусственных силикатах, шлаках, карбонатных породах, в материалах с высоким содержанием глинозема, воде и др., а также и цирконий. [c.6]

    При отделении железа, алюминия, хрома, циркония и титана поступают следующим образом. [c.65]

    Когда отделяемое количество урана не обеспечивает осаждения его из раствора с образованием самостоятельной твердой фазы в связи с недостаточной его концентрацией в растворе, или если выделение имеет место, но вследствие некоторой, хотя и незначительной растворимости выделяемого соединения значительная часть его остается в растворе или удерживается в виде коллоидных частиц, то в таких случаях образующееся соединение урана выделяют из раствора с другим труднорастворимым соединением, являющимся носителем В качестве носителей чаще всего применяются такие соединения Которые в дальнейшем не мешают определению или легко удаляются Хорошими носителями для выделения следов урана являются гид роокиси многих металлов, обладающие рыхлым строением и боль Шой поверхностью. Гидроокиси железа, алюминия, кальция, маг йия, олова, тория, циркония и титана были рекомендованы для со осаждения с ними малых количеств урана [8, 19]. В качестве носи Телей для отделения следов урана могут применяться также пере Кись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения сле-Довых количеств урана [126]. [c.283]

    Цинк вместе с железом, никелем и кобальтом может быть отделен от ш елочных металлов, магния и щелочноземельных металлов осаждением сульфидом аммония (стр. 89), и от всех этих элементов, а также и от алюминия, титапа, циркония, ниобия и др. — осаждением сульфидом аммония в присутствии тартрат-ионов. Отделение от олова, сурьмы, мышьяка и др. может быть проведено осаждением цинка сульфидом натрия или сульфидом калия. Аммиак часто применяется для отделения цинка от железа, алюминия и некоторых других элементов. К сожалению, при обычной обработке аммиаком (стр. 102) цинк частично увлекается осадком, и отделение это можно применять только в тех случаях, когда осадок мал, кремнекислота отсутствует и осадок переосаждают н менее трех раз или же когда определяют только цинк и можно применять особый метод обработки При осаждении железа и других элементов аммиаком [c.480]

    Аналитические методы отделения фтора основаны на ограниченной растворимости неорганических фторидов летучести тетрахлорида кремния, реже трифторида бора устойчивости фторид-ных комплексов с алюминием, цирконием, железом, торием и титаном. [c.56]

    Дальнейшая обработка осадка от аммиака зависит от его состава. Если содержание алюминия и железа значительно превышает содержание редкоземельных элементов, осадок целесообразно обработать фтористоводородной кислотой, после чего поступают следующим образом. Раствор выпаривают на водяной бане почти досуха. Остаток смачивают 0,5 мл фтористоводородной кислоты, прибавляют 25 мл воды, 0,5 мл соляной кислоты и после непродолжительного нагревания фильтруют. Осадок промывают водой, содержащей 2 мл фтористоводородной кислоты и 2 мл соляной кислоты в 100 мл. Фториды смывают с фильтра в платиновую чашку, фильтр сжигают и золу присоединяют к осадку. Осадок смачивают серной кислотой, выпаривают и избыток кислоты удаляют нагреванием в радиаторе (см. рис. 5, стр, 48). Остаток сульфатов растворяют в холодной воде. Из раствора редкоземельные металлы осаждают в виде оксалатов, которые промывают 1 %-ным раствором щавелевой кислоты, прокаливают при 1200° С и взвешивают. По цвету окислов можно, получить некоторое представление об их составе. Осадок, если возможно, растворяют в соляной кислоте (если нет, то в серной), после чего производят соответствующую обработку для отделения и определения тория и церия. Фильтрат, после отделения фторидов редкоземельных металлов, выпаривают с серной кислотой до полного удаления фтора. Остаток растворяют в поляной кислоте, и затем железо, алюминий и другие элементы осаждают аммиаком (стр. 565). Осадок прокаливают, доводя температуру в конце прокаливания до 1200° С, и взвешивают. В этом осадке определяют железо (стр. 122), цирконий (стр. 122) и бериллий (стр. 121). В осадке можно определить также и титан, если содержание его не устанавливают в отдельной навеске пробы. Фосфор определяют в отдельной навеске. Содержание всех этих элементов вычитают из массы суммы смешанных окислов, а полученную разность считают за окись алюминия. [c.624]


    Различная растворимость гидроокисей металлов позволяет осуществить гидролитическое отделение кобальта ог высоковалентных легкогидролизующихся ионов 1П аналитической группы, а именно, от ниобия, тантала, циркония, титана, железа, алюминия, галлия, индия, таллия, хрома, урана, бериллия, редкозе.мельных элементов. Применяется осаждение гидроокисью аммония, ацетатом, сукцинатом или бензоатом аммо- [c.60]

    Чтобы установить химический состав циркона или жаростойкого бетона, содержащего цирконий, одну навеску пробы сплавляют с едким натром и перекисью натрия и в ней определяют содержание кремневой кислоты, железа, алюминия, кальция и магния. Другую навеску пробы разлагают сплавлением с карбонатом натрия и бурой и определяют цирконий. [c.102]

    Практический интерес представляют собой сплавы циркония с алюминием и оловом, имеющие а-структуру. Сплавы с алюминием наиболее прочные из всех сплавов циркония, но меньше сопротивляются окислению, чем чистый цирконий. Сплавы с оловом (до 2,5%) и небольшими добавками железа (до 0,25%), хрома, никеля и др.( цир-калой) при хороших механических свойствах обладают очень высокой коррозионной стойкостью [14, 16]. [c.302]

    Аналитическая химия циркония. II. Обогащение циркония в виде его отрицательного заряженного сульфатного комплекса с помощью сильноосновного анионита амберлит IRA-400. Отделение циркония от тория, титана, железа, алюминия и многих других элементов [2960]. [c.364]

    Титан, ниобий, тантал, хром и медь в количествах, не превышающих содержание циркония, не мешают определению. Не мешает также небольшое количество железа III (восстанавливаясь при том же потенциале, железо будет давать подкладку , т. е. начальные и остаточные токи, величина которых будет зависеть от концентрации железа). Алюминий мешает определению. Погрешность определения составляет около 1 % отн. Метод может быть применен для определения циркония в различных объектах. [c.354]

    Соединения висмута, сурьмы, бария, кремния, магния, ванадия, алюминия, цинка, железа, углерода хлористый висмут, двуокись титана, двуокись тория, окись циркония, окись алюминия, силикагель на активном угле лучше всего действуют двуокись титана и двуокись кремния [c.378]

    Ксиленоловый оранжевый [7] является наиболее хорошо изученным реагентом этой группы и применяется для определения ниобия [8—10], циркония [11—13], суммы [14] и индивидуальных редкоземельных элементов [15, 16], скандия [17], индия [18], урана, тория, висмута, железа, алюминия, молибдена, фтора и других элементов. [c.125]

    Данный метод определения очень точный, но длительный. Определению мешают ионы железа, алюминия, хрома, марганца, титана, циркония и другие образующиеся в аммиачной среде гидроокиси. Поэтому перед осаждением к кислому раствору предварительно добавляют винную или лимонную кислоты, которые связывают указанные элементы в прочные растворимые комплексные соединения, вследствие чего эти элементы не образуют гидратов. Механизм образования растворимых прочных комплексных соединений с винной кислотой заключается в том, что ионы металла замещают атомы водорода как карбоксильных, так и спиртовых групп  [c.305]

    По-видимому, в тех случаях, когда определяемый компонент ни в начале, ни в конце процесса не обладает летучестью (алюминий, цирконий, железо и другие металлы, содержащиеся в виде комплексонатов), фотохимическое разрушение органических веществ можно проводить и в открытых сосудах, что значительно упрощает анализ. [c.134]

    Вольфрам, ванадий, уран, титан, цирконий, трехвалентный хром, марганец, двухвалентное железо, алюминий и многие другие элементы не мешают. Мешающее действие трехвалентного железа можно устранить, если восстановить его хлоридом двухвалентного олова. Вольфрам медленно восстанавливается диэтилдитиофосфорной кислотой до вольфрамовой сини. Почти мгновенное образование интенсивного малинового окрашивания в результате присутствия молибдена позволяет легко обнаружить его в присутствии вольфрама. Даже очень большой избыток щавелевой и винной кислот не препятствует появлению малиновой окраски после прибавления необходимого количества конц, НС1 или H2SO4 и диэтилдитиофосфорной кислоты, а также не снижает чувствительности обнаружения молибдена. [c.106]

    Выполненные в последнее время комплексные электроповерхностные исследования ряда дисперсий (монодисперсных золей золота, иодида серебра, суспензий полистирола, палыгорскита, оксидов железа, алюминия, циркония и других) [6—8] методами электрофореза, потенциала течения, потенциометрического титрования, кондуктометрии и низкочастотной дисперсии диэлектрической проницаемости свидетельствуют о том, что в широком интервале концентраций 1 — 1-зарядных электролитов исправленные с учетом поляризации ДЭС значения г з1-потен-циала много меньше Это трактуется как свидетельство локализации значительного заряда между плоскостью скольжения и слоем Штерна вследствие наличия на поверхности полимолекулярмых слоев жидкости с пониженной гидродинамической подвижностью. [c.13]

    Метод пр именим для определения циркония в рудах и побочных продуктах (шламы, фракции с высоким содержанием титана, железа, алюминия, олова и т. п.). [c.375]

    По Остроумову [244], осаждение пиридином лозволяет полностью отделять железо, алюминий, хром, уран, индий, галлий, титан, цирконий, торий и скандий от кобальта (и других двухвалентных металлов). Этот метод изучался и другими авторами [1347]. Значительные количества сульфатов мешают разделению. Кро.ме того, в этом случае выделяются основные соли алюминия, железа и хрома, а осадок очень плохо отстаивается и проходит через фильтр осаждение не количественно. Если количество сульфатов невелико, разделение удается в присутствии хлорида аммония, который препятствует образованию основных солей и способствует быстрой коагуляции осадка. [c.65]

    С содержанием 6—7% Hf02 и до 7% ТЬОа жаргон— драгоценный циркон золотисто-желтого цвета аршиновит — метаколлоидный циркон. Хим. состав (%) ггО — 67,01 810г — 32,99. Примеси гафний, торий, уран, редкоземельные элементы, кальций, железо, алюминий, реже — стронций, иттрий, нио- [c.729]

    Разделение суспензией карбоната бария. Суспензия готовится. сливание.м растворов хлорида бария и карбоната натрия с таким расчето.м, чтобы небольшое количество хлорида бария оказалось в избытке. В это.м случае суспензия создает в растворе pH 7,25 [1484]. Суспензия позволяет отделить от кобальта катионы трехвалентного железа, алюминия, титана, циркония, хро.ма и урана, а также фосфор и ванадий, если присутствуют перечисленные выше элементы. [c.66]

    Суспензия окиси цинка не должна показывать щелочной реакции по фенолфталеину. В присутствии большого количества железа (III), что имеет место, например, при анализе стали, после окЕСЛения раствора пробы, осадок от окиси цинка будет содержать все железо, вольфрам, ванадий, хром, уран, цирконий, титан, алюминий, фосфор, мышьяк, олово и почти полностью медь, молибден и кремний. Железо (II), вольфрам (если они не полностью окислены) и малые количества кремния, меди, молибдена, сурьмы и свинца могут оказаться в фильтрате, если они присутствовали в первоначальном растворе в значительных количествах. Фильтрат содержит марганец и кобальт почти полностью если осадок переосадить и соединить фильтраты, то отделение марганца и кобальта можно считать полным. Отделение никеля не так удовлетвори- [c.108]

    Стрелоу [606] разработал метод отделения бериллия от железа, алюминия (а также тория, циркония и др.) с использованием катионита AG-50WX8 из - 0,2 N солянокислых растворов. Анализируемый раствор пропускают через колонку (/ = 19—20 см, d = 1,9—2,0 см) с 20 г смолы в Н+-форме. Бериллий десорбируют 375 мл IN H I или 425 мл , 2N HNO3. Для вымывания алюминия необходимо 500 мл 3N H I, а для вымывания железа — 300 мл 2N H I. Отделение бериллия от железа, особенно, если последнее присутствует в концентрации более 60 мг, эффективнее протекает, если в качестве элюента используется 1,2Л HNO3. [c.138]

    Амперометрическое титрование можно проводить даже в том случае, если ни одно из веществ, участвующих в реакции, и ни один из продуктов реакции между ними не дает электродной реакции. В этом случае титрование возможно по так называемому индикаторному методу, предложенному Рингбомом и Вилькманом. Этот метод заключается в следующем если требуется определить ион, не дающий электродной реакции, при помощи иона, также не способного ни восстанавливаться, ни окисляться на электроде, то к исследуемому раствору добавляют небольшое количество такого вещества, которое было бы способно давать электродную реакцию и, кроме того, взаимодействовало бы с тем же реактивом, но лишь после того, как закончится реакция с определяемым ионом. Примером является разработанное Ю. И. Усатенко и Г. Е. Беклешо-вой . 3 определение алюминия, бериллия и циркония при помощи титрования раствором фторида калия в присутствии индикатора — трехвалентного железа. Алюминий, бериллий и цирконий образуют более прочные фториды, чем железо, и поэтому реагируют с фторид-ионом в первую очередь когда же они будут практически полностью связаны фторидом, последний начнет реагировать с железом (И1). При этом величина силы тока, обусловленная присутствием железа (П1), начнет уменьшаться, и кривая титрования будет иметь форму, изображенную на рис. 3. Четкость подобной кривой титрования определяется тем, в какой мере железо (П1) соединяется с фторидом в данной среде при реакции последнего с определяемым ионом. [c.18]

    Так, в работе [131] показано, что искры, возникающие при шлифовании стали, зажигают аэрозоли титана, циркония, магния, алюминия, карбонильного железа, цинка и серы. Аэрозоли же большинства органических пылей этими искрами воспламенить не удалось. Однако при добавлении к ним небольшого количе-/ ства магния их способность к [c.148]

    Из других методов отделения ряда элементов от марганца следует отметить осаждение купферондм (стр. 143), в результате которого железо, титан, цирконий и ванадий могут быть количественно отделены от марганца электролиз с ртутным катодом в разбавленном сернокислом растворе (стр. 165), при котором осаждаются железо, хром, никель и молибден, а марганец оста ется в растворе извлечение железа и молибдена из солянокислых растворов из хлоридов эфиром (стр. 161) и осаждение железа, алюминия и хрома карбонатом бария.  [c.497]

    Осаждение циркония купфероном с последующим прокаливанием осадка до окиси дает точные результаты. Этот метод удобен тем, что в результате прокаливания получается остаток определенного состава, который можно взвешивать, и, кроме того, при атом происходит полное отделение циркония от алюминия, хрома, урана (VI), борной кислоты и малых количеств фосфата. Однако определению циркония купфероновым методом препятствуют многие элементы, например титан, торий, церий (и, возможно, другие редкоземельные металлы), большинство элементов сероводородной группы, железо, ванадий, ниобий, тантал, вольфрам, кремнекислота и уран (IV). [c.643]

    Установлено , что цирконий количественно осаждается также фтале-вон кислотой из раствора в 0,3 н. соляной кислоте. В этом случае однократным осаждением цирконий отделяют от большинства элементов, ъ частности от тория, железа, алюминия, бериллия, урана, марганца, никеля и редкоземельных металлов цериевой группы. В присутствии олова, титана, ванадия и хрома требуется двукратное осаждение. Основанный на этой реакции метод определения циркония заключается в следуюш,ем. К раствору хлорида циркония прибавляют 30 мл насыщенного раствора нитрата аммония, а затем вводят достаточное количество 2 н. соляной кислоты, чтобы при последующих операциях после разбавления раствора до 200 мл концентрация соляной кислоты в нем была 0,3 н. Разбавляют до 100 мл, нагревают до кипения и, непрерывно перемешивая, вводят 100 мл кипящего 4%-ного раствора фталевой кислоты. Осторожно кипятят [c.647]

    При осаждении уротропином в растворе устанавливается pH 5—5,5. В этих условиях титан отделяется от никеля, кобальта и марганца. При введении в раствор аммонийных солей происходит также отделение титана от редкоземельных элементов, не осаждающихся уротропином в присутствии солей аммония. Метод имеет довольно ограниченное применение, так как не позволяет отделять титан от таких элементов, как железо. (П1), алюминий, медь, хром, уран, цирконий, торий и бериллий, которые выделяются из раствора при pH ниже 5. Имеется указание об использовании уротропина при анализе легированных сталей для совместного отделения титана, и пиобвя от железа, предварительно восстановленного до двухвалентного состояния. Применение пиридина, создающего в растворе pH около 6, предложено Э. А. Остроумовым для отделения железа, алюминия, титана и друз их элементов от марганца, кобальта, никеля, щелочных и щелочноземельных металлов. Доп. перев.  [c.654]

    Мы применяли только метод осаждения кальция в растворе, содержащем свобод11ую щавелевую кислоту и оксалат аммоция. Этим методом анализируют фосфатные руды в Бюро Стандартов США. Тщательное ого исследование, проведенное с растворами, содержащими только кальций, и с растворами, содержащими вместе с кальцием железо, алюминий, титан, цирконий, магний и большие количества фосфора, показало, что метод дает превосходные результаты и потеря вследствие растворимости оксалата кальция не превышает потери по той же причине, происходящей при применении обычного метода. Барий, если он присутствует в растворе в умеренных количествах, не переходит в конечный осадок оксалата кальция. Стронций, однако, распределяется таким образом, что часть его осаждается, а часть остается в фильтрате. [c.709]


Смотреть страницы где упоминается термин Цирконий от железа и алюминия: [c.518]    [c.86]    [c.259]    [c.4]    [c.21]    [c.209]    [c.67]    [c.532]    [c.303]    [c.557]    [c.274]    [c.730]   
Практическое руководство по неорганическому анализу (1960) -- [ c.891 ]




ПОИСК





Смотрите так же термины и статьи:

ГРУППА СУЛЬФИДА АММОНИЯ Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий, алюминий, бериллий, хром, торий, скандий, редкоземельные металлы, цирконий, титан, ниобий и тантал Элементы, образующие при действии (NH4)aS растворимые в кислотах сульфиды Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий Железо

Груздева, Т. Н. Загорская, И. И. Раевский. Строение и свойства сплавов циркониевого угла системы цирконий — алюминий — железо

Железо алюминии

Оксихлориды ниобия, тантала, циркония, гафния, титана, алюминия и железа

Осаждение циркония и отделение его от железа, алюминия, хрома, индия, галлия, бериллия, урана, редкоземельных элементов и иттрия

Отделение железа, алюминия, хрома, урана, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочных металлов

Отделение железа, алюминия, хрома, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочей

Системы, образуемые хлоридами ниобия, тантала, циркония, алюминия, железа и щелочных металлов

Совместное осаждение железа, алюминия, титана, циркония, хрома, редкоземельны металлов, фосфора и ванадия вместе с марганцем и без него

Третья аналитическая группа катионов. Алюминий, хром, железо, марганец, цинк, ванадий, церий, никель, кобальт, бериллий, титан, цирконий, торий, уран

Физико-химические основы очистки тетрахлоридов циркония и гафния от хлоридов алюминия и железа

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза

Цирконий отделение от титана, алюминия железа и фосфатным методом

железо—ацетилацетат хелаты цирконий хелаты реакции алюминий алкилы

железо—ацетилацетат хелаты цирконий хелаты синтез алюминий алкилы

железо—ацетилацетат хелаты цирконий хелаты смолы алюминий втор-бутилат

оксихинолином фосфатами алюминия, железа, тория, циркония титана



© 2024 chem21.info Реклама на сайте