Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные соединения получение

    Ректификация. Ректификация — эффективный метод. Используется в промышленных масштабах для разделения и очистки ряда редких элементов. Для разделения методом ректификации пригодны соединения Zr и Hf, обладающие относительно большей летучестью алкоголяты, молекулярные соединения тетрахлоридов с хлорокисью фосфора, тетрахлорнды. Практическое осуществление ректификации сопряжено со значительными трудностями алкоголяты кипят только в вакууме, получение молекулярных соединений с хлорокисью фосфора сопряжено с применением ядовитых и огнеопасных соединений фосфора и сложностью выделения циркония и гафния из комплексного-соединения после разделения [c.345]


    Закон постоянства свойств. Кристаллохимическое строение и свойства. Логическим следствием закона постоянства состава является закон постоянства свойств (Пруст, 1806) — свойства веществ не зависят от способа его получения и предыдущей обработки. Совершенно очевидно, что этот закон относится только к молекулярным соединениям. Свойства химических соединений, не имеющих молекулярной структуры, прямо зависят от способа получения и предыдущей обработки. Это прежде всего связано с тем, что количест- [c.25]

    На каждую такую макромолекулу нейлона выделяется две молекулы Н2О. Из формулы нейлона видно, что произошло соединение адипиновой кислоты и гексаметилендиамина. Вместо групп КНз здесь имеются амидные группы КН и вместо кислотных групп СООН имеются группы СО, а из водородных атомов и гидроокислов образовалась вода. Молекулярный вес полученного нейлона составляет 20 ООО—30 ООО. [c.349]

    Метод расщепления рацематов через молекулярные соединения близок к разобранному в предыдущем разделе расщеплению через диастереомеры. В обоих случаях для расщепления рацемата его переводят в пару диастереомеров, однако, если в случае расщепления через диастереомеры речь идет об образовании прочных химических соединений, то при расщеплении через молекулярные соединения образуются лишь легко распадающиеся молекулярные соединения. Теоретически последний способ имеет то преимущество, что как получение, так и разрушение молекулярных соединений протекает в мягких условиях, до минимума снижающих возможность рацемизации. [c.106]

    Опыт. Получение пикрата нафталина. В небольшой колбочке с обратным холодильником растворяют при нагревании 0,1 г нафталина в , Ъ мл этилового спирта. К горячему раствору приливают приготовленный отдельно раствор 0,1 г пикриновой кислоты в 1 мл этилового спирта. При охлаждении раствора выпадают игольчатые желтые кристаллы молекулярного соединения нафталина с пикриновой кислотой. Осадок отделяют с отсасыванием, промывают 0,5 мл спирта, сушат и определяют температуру плавления. Температура плавления пикрата нафталина 149° С. [c.233]

    Первая стадия синтеза — оксиэтилирование многоатомных спиртов (трйзти-ленгликоль, триэтаноламин) и гексаметилендиамина — проводилась на установке, описанной в [1], в присутствии 2—4%-ного едкого натра от оксиэтилированного продукта в качестве катализатора. Оксиэтилирование гексаметилендиамина проводилось без катализатора. Условия проведения оксиэтилирования приведены в табл. 1. По окончании оксиэтилирования в полученный полиоксиэтиленгликоль загружалось требуемое количество соответствующей кислоты и 1% от общей загрузки концентрированной серной кислоты сверх, количества последней, необходимой для нейтрализации едкого натра в оксиэтилированном продукте, Этерификация проводилась при интенсивном перемешивании реакционной массы при температуре порядка 160—190° С до тех пор, пока кислотное число ее будет равно кислотному числу серной кислоты в исходной реакционной смеси. Условия проведения этерификации приведены так же в табл. 1. В обычных условиях пеларгонаты оксиэтилированных соединений представляют собой маслянистые жидкости светло-коричневого цвета, а стеараты — темно-коричневые воскообразные вещества, температура застывания которых приведена в табл. 2. В полученных продуктах было определено содержание окиси этилена по привесу ч йодометрически по Сиджиа [И], полученные данные находятся в удовлетворительном согласии (табл. 2). По содержанию окиси этилена был рассчитан молекулярный вес полученных соединений. .  [c.147]


    Миндальная кислота является классическим объектом стереохими-ческих исследований. Само собой разумеется, что при описанном выше синтезе миндальной кислоты из.бензальдегида и синильной кислоты получается оптически недеятельное соединение. Однако прн проведении реакции в присутствии небольшого количества эмульсина (энзима горького миндаля) Розенталеру удалось осуществить частичный асимметрический синтез (ср, стр. 137) полученная таким путе]М миндальная кислота вращала влево, хотя и не являлась индивидуальным оптическим изомером. ПО-видимому, это связано с промежуточным образованием молекулярных соединений синильной кислоты и эмульсина, а затем эмульсина и циангидрина бензальдегида  [c.672]

    К магнийорганическому соединению, полученному из 50 г (2,08 г-атома) магния и 160 г (1,68 моля) бромистого метила в 1500 мл эфира в колбе емкостью 12 л, снабженной капельной воронкой, мешалкой и обратным холодильником, прибавляют в течение 90 мин. 200 г (1,34 моля) 4-М,Ы-диметиламино-бензальдегида в 3500 жл эфира и перемешивают еще в течение часа. Реакционную смесь разлагают осторожным прибавлением 120 мл насыщенного раствора хлористого аммония, содержащего 1 % концентрированной соляной кислоты. На следующийденьэфир декантируют, а зернистый осадок, содержащий соли магния и аммония,промывают двумя небольшими порциями эфира. Все эфирные растворы соединяют и отгоняют эфир. Остаток (180 г) делят на две части каждую часть подвергают дегидратации, перегоняя возможно быстрее из колбы Кляйзена при остаточном давлении 1 мм до тех пор, пока температура паров не достигнет 140°. Дистилляты соединяют вместе (67 г) и фракционируют в молекулярном кубе при остаточном давлении 1 10 мм. Полученный 4-М,М-диметиламипостирол содержит немного низкокипящих веществ и является однородным. Получают 60 г вещества с т. пл. 16,0— 16,8° выход равен 30,4% от теорет. Если перегонку вести не в молекулярном кубе, а с применением короткой колонки при остаточном давлении 0,5 мм, то выход 4-Ы,М-диметиламиностирола составляет 24% [431. [c.113]

    Однако иногда (в виде исключения) химическое расщепление не удается осуществить. Бывает, что обе соли, полученные из ./-кислоты к оптически активного основания или из ./-основания и оптически активной кислоты, образуют молекулярное соединение, которое кристаллизуется таким образом, что разделение путем дробной кристаллизации в температурном интервале, в котором они являются устойчивыми, [c.136]

    Еще в прошлом веке стехиометрические законы (законы постоянства состава, кратных отношений, эквивалентов), установленные для молекулярных соединений (газообразных и парообразных), завоевали в теоретической химии настолько прочные позиции, что отклонения от них для веществ любой структуры казались невозможными. Поэтому первые факты получения соединений непостоянного состава, соединений с нарушением стехиометрических соотношений пытались объяснить недостаточной очисткой препаратов. [c.199]

    На рис. 1.30 показаны ИК-спектры двух соединений с молекулярной массой около 100 третичного спирта и кислородного соединения, полученного из я-пропилового спирта. Напишите их структурные формулы. [c.35]

    Закон постоянства свойств. Кристаллохимическое строение и свойства. Логическим следствием закона постоянства состава является закон постоянства свойств (Пруст, 1806) — свойства вещества не зависят от способа его получения и предыдущей обработки. Этот закон относится только к молекулярным соединениям. Свойства химических соединений, не имеющих молекулярной структуры, прямо зависят от способа получения и предыдущей обработки. Это прежде всего связано с тем, что количественный состав соединения зависит от условий его получения. А свойства вещества яв.пяются в первую очередь функцией состава. Однако, по Бутлерову, свойства вещества зависят не только от качественного и количественного состава, но и от химического строения. Но классическая теория химического строения Бутлерова относится к молекулярной химии, поскольку она рассматривает химическое строение именно молекул. Это и понятно, так как [c.19]

    В прошлом можно указать две группы химиков, каждая из которых имела собственный взгляд на синтез соединений, содержащих кремний и азот. Химики одной группы использовали глубокий вакуум и соответствующее оборудование и получали продукт, количество которого измерялось в миллиграммах. Другая группа использовала относительно распространенные методы органической химии, несколько измененные для исключения из сферы реакции воды и воздуха, причем получались в тысячи раз большие количества веществ. Такое положение определялось главным образом свойствами самих соединений легколетучие соединения низкого молекулярного веса с большим количеством связей 31—Н, образующиеся при взаимодействии трудно доступных исходных веществ, естественно, получали первым способом. Однако разработка методов крупномасштабного синтеза, вероятно, будет продолжаться, и эти методы будут пригодны даже для наиболее реакционноспособных веществ. Поэтому в статье, предлагаемой читателю, эти две группы методов не будут резко разграничены. Соединения будут рассмотрены приблизительно в порядке возрастания их сложности и классифицированы в зависимости от химизма процессов, лежащих в основе их получения. Методы получения псевдогалогенидов (за исключением азидов) не рассматриваются не рассматриваются также молекулярные соединения, содержащие связь кремний—азот. [c.140]


    Закон постоянства состава. Состав молекулярного соединения остается постоянным независимо от способа его получения. В отсутствие молекулярной структуры в данном агрегатном состоянии его состав зависит от условий получения и предыдущей обработки. Возьмем, к примеру, аммиак. Независимо от способов получения (прямой синтез из элементов, разложение аммонийных солей, действие кислот на нитриды активных металлов и т. п.) состав молекулы аммиака всегда постоянен и неизменен на атом азота приходится 3 атома водорода. А для оксида титана (2-[-) состав соединения зависит от условий получения температуры и давления пара кислорода. В молекуле аммиака, состоящей лишь из четырех атомов, исключается изменчивость состава. Оксид же титана (2-f) представляет собой фазу, состоящую из огромного числа атомов (порядка постоянной Авогадро), которая и определяет свойства этого соединения. Это— ярчайший пример перехода количества в качество коллектив из колоссального числа частиц обладает уже новым качеством — непостоянством состава. [c.24]

    Наличие сопряженных двойных связей сильно отражается на некоторых физических свойствах веществ. Так, оказывается, что молекулярная рефракция соединений с сопряженными связями, вычисленная из экспериментальных данных, значительно больше молекулярной рефракции, полученной из суммы атомных рефракций и инкрементов. [c.98]

    Полученное молекулярное соединение в количестве 846 г, представляет собой вязкую дымящую жидкость с удельным весом 1,90 содержание трехфтористого бора 37%. [c.200]

    Для получения п-грет-.амилфенола используют также и изоамилены, применяя в качестве катализаторов серную кислоту [6] и ее смесь с уксусной кислотой [7], фтористый бор и его молекулярные соединения [8]. [c.29]

    О . Для преодоления сопротивления ионов необходимо затратить много энергии, чтобы из ионов Na" и l образовались молекулы Na l, поэтому для получения парообразного хлорида натрия эта соль должна быть нагрета до высокой температуры. Этим и объясняются намного более высокие температуры кипения солей по сравнению с молекулярными соединениями (см. табл. 1-7). [c.38]

    Пример 8. Навеску 2,00 г вновь полученного молекулярного соединения неизвестного молекулярного веса растворили в 10,00 г воды, что привело к понижению ее нормальной температуры замерзания на 1,22°. Каков молекулярный вес полученного соединения  [c.216]

    В табл. 136 приводятся физико-химические константы алкилгалоиданизолов, полученных нами путем алкилирования галоидани-золо В олефинами в присутствии фтористого бора и его молекулярных соединений с ортофосфорной кислотой и этиловым эфиром. [c.236]

    Для избежания трудностей, связанных с реэкстракцией урана в водную фазу, был предложен ряд методов определения урана непосредственно в получаемых экстрактах [540, 790, 505]. Так, например, Пейдж, Эллиотт и Рейн [790] экстрагируют нитрат уранила растворами трибутилфосфата в изооктане и определяют уран По собственному светопоглощению полученного экстракта при 250 ммк (см. стр. 114), обусловленному присутствием молекулярного Соединения трибутилфосфата с нитратом уранила. Гилл, Ролф и Армстронг [540] экстрагируют нитрат уранила растворами трибутилфосфата в четыреххлористом углероде и определяют уран фото- [c.297]

    В 1953 г. проблемами гетерогенного катализа заинтересовалась группа сотрудников Миланского политехнического института во главе с профессором Натта [5]. Первоначально они применяли процесс Циглера, а позже стали вводить в полимеризационнуюсистему предварительно приготовленное твердое комплексное соединение, полученное в результате реакции четыреххлористого титана с триэтилалюминием. Изучение образующегося при этом осадка привело Натта с сотрудниками к открытию комплексных катализаторов на основе низших хлоридов титана и органических производных алюминия. Они установили, что при полимеризации пропилена, бутилена, стирола и других непредельных углеводородов на комплексных катализаторах образуются полимеры с высоким выходом и большим молекулярным весом. Эти полимеры коренным образом отличаются от обычных полимеров, синтезированных в гомогенной среде (способны кристаллизоваться, имеют гораздо более высокие и четкие температуры плавления, большую плотность и хуже растворяются в органических растворителях). Таким образом, можно провести аналогию между этими полимерами н двумя типами поливинилизобутиловогоэфира, описанными Шильд-кнехтом. Натта с сотрудниками с помощью рентгеноструктурного анализа и инфракрасной спектроскопии установили типы пространственного расположения заместителей у третичных углеродных атомов и строгую линейность полимерных цепей. [c.9]

    В книге Рехенберга посвященной разделению эфирных масел, в качестве дополнения помещено одно нз первых сообщений о составе молекулярных продуктов присоединения, В фундаментальном труде Пфайфера Органические молекулярные соединения 2 приведен систематический обзор органических и неорганически-органически.х молекулярных соединений, Неорганически-органические молекулярные соединения, полученные в период до 1911 г., можно найти в труде Гоффманна Словарь неорганических соединений, включающий продукты присоединения с органическими компонентами . В этом словаре в алфавитном указателе под рубриками соответствующих органических компонентов приведены обикнринятые названия молекулярных соединений. Полученные впоследствии молекулярные соединения приведены в справочниках Бейль-щтейна и Гмелина, а гакже в периодической литературе. Точную ссылку на соответствующие работы можно найти по предметным указателям реферативных журналов. [c.839]

    Комплексными, или координационными, соединениями называются соединения, полученные путем сочетания отдельных, способных к самостоятельному существованию простых соединений, ионов или молекулярных групп. В молекулах комплексных соединений всегда можно выделить центральный атом или ион, по-лучивщий название комплексообразователя, вокруг которого сгруппированы, или координированы, другие ионы или молекулярные группы — лиганды, или адденды [c.367]

    Закон постоянства состава. Состав молекулярною соединения остается постоянным независимо от. способа ею получения. В отсутствие молекулярной структуры ею состав зависит от ус.говий получения и предыдущей обработки. Возьмем, к примеру, аммиак. Независимо от способов получения (прямой синтез из простых веществ, разложение аммонийных солей, действие [c.18]

    Образовавшиеся при гидролитической поликонденсации кремнийорганические полимеры имеют сравнительно небольшую молекулярную массу. Для синтеза более высокомолекулярных продуктов (жидкостей, полимеров и каучуков) соединения, полученные при такой поликонденсации, подвергают окислению в присутствии катализаторов и при нагревании (термическая поликонденсация). При этом места некоторых отщепившихся органических радикалов заггимают атомы кислорода, сшивая тем самым макромолекуляр-ные цепи. [c.185]

    Нами в качестве катализатора при получении этого про-лукта использовано молекулярное соединение трехфтористо-го бора с ортофосфорной кислотой. [c.199]

    Кг, Хе, Rn ведут себя как неметаллические элементы, образуют обычные химические соединения со степенями окисления -(-2, -(-4, -(-6, -(-8 Они непосредственно pea гируют только со фтором и некоторыми фторидами Соединения Кг, Хе, Rn с остальными элементами получают косвенным путем из фторидов Наибольшее значение имеют соединения ксенона Соединения Кг немногочис ленны, существуют только при низкой температуре Получению и изучению свойств соединений Rn мешает его высокая радиоактивность, которая обусловливает специфику работы с такими соединениями и их неустойчивость Благородные газы (кроме Не и Ne) образуют молекулярные соединения включения типа клатратов с водой, фенолом, толуолом и другими веществами При низкой температуре они образуют друг с другом твердые раство ры (кроме Не) [c.392]

    В качестве ионитов обычно используют ионообменные высо молекулярные соединения — ионообменные смолы кислого или новного характера, нерастворимые в воде и органических раство] телях. Полученные извлечения пропускают через колонку, зап( ненную сорбентом. Сорбент и условия адсорбции должны бь выбраны такие, чтобы адсорбция извлекаемого вещества (или ществ) была избирательной и максимальной. Десорбция (элюиро ние) алкалоидов проводится подходящим растворителем, обеспе вающим максимальное элюирование. [c.134]

    Существуют следующие методы получения дисульфатов нагревание МегЗгОв до 300—400° С, прокаливание MeHS04 и обработка сульфатов серным ангидридом [232, 250]. В последнем случае вначале образуется, видимо, молекулярное соединение Me2S04 SO3, которое после длительного нагревания превращается в обычный пиросульфат Me2S207. [c.117]

    Дифенилкарбазид обычно получают взаимодействием мочевины с фенилгидразином [1]. По литературным данным [2], получаемый этим методом препарат плавится при 165—166", тогда как в других источниках указываются иные значения температуры плавления 169—170° [3] 172—173° [4] 175° [51. Причиной этого является образование наряду с дифенилкар-базидом 1-фенилсемикарбазида оба продукта реакции образуют молекулярное соединение с температурой плавления около 166° [5]. Для получения чистого препарата с температурой плавления 170—175° требуется применение труднодоступных исходных веществ дифенилкарбоната [3] или гвая-колкарбоната [51. [c.92]

    Можно ли дифференцировать по точным массовым числам молекулярных ионов (полученных с помощью высокого разрешения) следующие соединения а) этан и формальдегид, б) уксусную кислоту и изопропанол, в) циклопен-танол и н-гексан, г) 2-метилциклопентанон и циклогекса-нон, д) н-бутаналь и тетрагидрофуран  [c.16]


Смотреть страницы где упоминается термин Молекулярные соединения получение: [c.839]    [c.273]    [c.27]    [c.25]    [c.70]    [c.35]    [c.245]    [c.245]    [c.376]    [c.536]    [c.379]    [c.157]    [c.89]    [c.168]    [c.75]    [c.89]    [c.391]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.839 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.839 ]




ПОИСК





Смотрите так же термины и статьи:

Получение пз соединений



© 2025 chem21.info Реклама на сайте