Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды хроматографическое разделение

    Основные теоретические положения хроматографического разделения нефтепродуктов заключаются в том, что из нефтяных углеводородов легче всего адсорбируются (в частности, на силикагеле) ароматические, затем непредельные и труднее всего нафтеновые и метановые углеводороды. [c.526]

    Ряд монографий и обзоров посвящены истории развития газовой хроматографии [4—6], в том числе истории хроматографического анализа нефти и нефтепродуктов [7], основам хроматографического разделения [8—11], качественного [12, 13] и количественного [14, 15] газохроматографического анализ-а, капиллярной хроматографии [16—18], приборам для хроматографии [19—20], автоматизации обработки хроматографической информации и использованию ЭВМ [21—23]. Приведены сведения о хроматографических материалах-носителях и стационарных жидкостях [24— 27], об относительных объемах и индексах удерживания углеводородов на различных неподвижных фазах [12, 28]. Применению газовой хроматографии для анализа нефти, нефтепродуктов, углеводородных смесей посвящены работы [29—33], а в нефтехимии — [34]. [c.115]


    Рекомендуемый нами способ определения газов методом измерения концентрации углеводородов хроматографическим разделением их до пентанов включительно и суммарного измерения содержания более тяжелых угле- [c.26]

    Диаграммы, приведенные на рис. 12,13, отражают ход анализа экстракция кислотой (основания), экстракция щелочью (фенолы), ректификация нейтрального остатка на фракции, хроматографическое разделение на группы углеводородов и нейтральные кислородные соединения (ИКС) с последующим кольцевым анализом углеводородов (А — ароматическое кольцо, N — нафтеновое кольцо, цифра указывает число колец данного типа). [c.169]

    Сульфиды связаны с конденсированными ароматическими углеводородами нефтяных фракций и при хроматографическом разделении всегда выделяются в виде концентрата, содержащего сульфиды и конденсированные ароматические углеводороды. Чем боль- [c.196]

    В последнее время нри исследованиях углеводородного состава масел для удаления смолисто-асфальтовых веществ и ароматических углеводородов применяют вместо кислотной обработки холодную фракционировку селективными растворителями [259], каталитическое гидрирование [35] и хроматографическое разделение, а иногда и комбинации этих и некоторых других методов [79]. [c.523]

    Подобная методика использовалась американскими исследователями [79] для хроматографического разделения фракции 335—530 в колонке, заполненной активным оксидом алюминия и силикагелем в массовом отношении 60 40. В качестве элюентов применяли пентан — для насыщенных углеводородов, 5 % раствор бензола в пентане — для моноциклических аренов, 15 % раствор — для бициклических, смеси метанол — диэтиловый эфир — бензол (60 20 20) и чистый метанол — для полициклических аренов и полярных компонентов. [c.62]

    Для хроматографического разделения насыщенны углеводородов можно использовать неполярные адсорбенты, в частности, активные угли. [c.63]

    Н. И. Черножуковым и Л. П. Казаковой [38] разработана методика выделения твердых ароматических углеводородов из масляных фракций нефти. Существенным элементом этой методики является разделение исследуемых твердых ароматических углеводородов на две группы углеводородов, образующих комплекс с карбамидом, и углеводородов, не образующих комплекса с карбамидом. Авторами также разработана методика выделения твердых ароматических нафтеновых и парафиновых углеводородов, присутствующих в высококипящих фракциях нефти [179, 270].- Методика предусматривает наряду с хроматографическим разделением на силикагеле и депарафинизацией в смеси ацетон-бензол-толуол разделение твердых углеводородов карбамидом (в растворе метилэтилкетона) на углеводороды, образующие комплекс, и на углеводороды, не образующие комплекс с карбамидом. [c.188]


    Таким образом, рассмотренные методы исследования в сочетании с хроматографическим разделением нефтяных фракций на адсорбентах, а также фракционировкой тяжелых фракций в глубоком вакууме, фракционировкой селективными растворителями, использованием избирательной склонности к комплексооб-разованию различных групп углеводородов с карбамидом и т. д. и т. п., дополняя друг друга, дают известную, пока все еще весьма ориентировочную картину химического состава масляных фракций. [c.9]

    Неоднократно делались попытки связать состав газов и их возраст какими-либо закономерностями. Самая идея подобного взаимоотношения правильна, потому чтд деградация молекул продолжается в течение всей геохимической истории нефти, хотя и замедляется в конце процесса. Теоретически можно ожидать, что древние газы должны содержать больше ближайших гомологов метана, чем газы начальных этапов превращения. Можно также ожидать, что переход азотистых соединений в азот должен относительно увеличить концентрацию азота в древних газах. Возможно, что подобное положение вещей и удалось бы показать анализами газа, однако на пути решения подобной задачи появляется множество затруднений во-первых, газ представляет собой подвижную систему углеводородов, смесь которых неизбежно должна менять свой состав в зависимости от давления и температуры, особенно при наличии такого растворителя, как нефть во-вторых, миграция газа связана с своеобразным хроматографическим разделением компонентов вследствие различий в молекулярном весе и вязкости компонентов в-третьих, в каждом месторождении можно предполагать частичное удаление наиболее легких компонентов (метана) в силу диффузии и подобных явлений, наконец, нельзя не считаться с тем, что нет практической возможности принимать известным количественное соотношение между газообразными и жидкими углеводородами нефти. Все это приводит к тому, что всякая проба газа, отобранная для исследования, будет случайной, т. е. обособленной от той среды, из которой она взята. Тем не менее изучение состава природных газов иногда позволяет наметить кое-какие закономерности, отражающие действительное положение дела. [c.77]

    Сернистые соединения, содержащиеся в нефтяной масляной фракции, адсорбируются аналогично ароматическим углеводородам, и при хроматографическом разделении фракции они извлекаются вместе с ароматическими углеводородами. Выделяемые при этом парафины и нафтены обычно не содержат серы. [c.239]

    Под термином "масла принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. В их состав входят парафиновые, циклопарафиновые и ароматические структуры в разнообразных комбинациях. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклнческие), средние (бициклические) и полициклические (три и > циклические). Наиболее важное значение имеют смолы и асфальтены, которые часто называют коксообразующими компонентами, поскольку они создают сложные технологические проблемы при переработке ТНО. Смолы - плоскоконденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенных посредством алифатических структур. Установлено, что асфальтены в отличие от смол образуют пространственные в большей степени конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным признакам, как растворимость в низкомолекулярных алканах, соотношение С Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности  [c.56]

    Сернисто-ароматические концентраты, полученные хроматографическим разделением бензино-керосиновых фракций узбекских нефтей, содержали 5—10 вес. % общей серы, т. е. в 5 раз больше, чем исходные фракции (степень извлечения сернистых соединений составляла 60%). Однако примесь ароматических углеводородов в полученных концентратах достигала 50 вес. % и более [14]. Выделить из сернисто-ароматического концентрата некоторые сернистые соединения оказалось возможным лишь при использовании дополнительных методов (комплексообразование, ректификация). [c.100]

    Исследовали керосино-газойлевую фракцию 231 —334° С высокосернистой нефти радаевского месторождения, которая характеризовалась следующими данными р20 = 0,844 2,18 вес. % общей серы 32 вес. % ароматических углеводородов [15]. При хроматографическом разделении полученного сернисто-ароматического концентрата на более узкие фракции 21—37% от всего количества общей серы, содержавшейся во фракции 231—334° С, оказалось во фракции моноциклических ароматических углеводородов, остальное — в смеси с бициклическими ароматическими углеводородами. [c.100]


    Сергиенко и Лебедев [145] выделили из девонской нефти Ромаш-кинского месторождения фракции твердого парафина, отвечающие-по константам индивидуальным парафиновым углеводородам Сах — Сзо нормального строения. Предельные углеводороды нефти, вымпа-ющие выше 340° С, были выделены двухкратным хроматографированием на крупнопористом активированном силикагеле. После разделения предельных высокомолекулярных углеводородов на твердые и жидкие с помощью избирательных растворителей и охлаждения твердые углеводороды подвергались карбамидной обработке. Углеводороды, образовавшие кристаллические комплексы с карбамидом после регенерации их из комплекса подвергались хроматографическому разделению по Фуксу [146]. Характеристика состава и свойств-предельных углеводородов из девонской нефти Ромашкинского месторождения приведена в табл. 14. [c.87]

    На рис. 13 и 14 приведены диаграммы хроматографического разделения фракций до и после отделения сульфидов. Как это видно, углеводородный состав изменился мало. Между тем за счет удаления сульфидов и кислородных соединений (содержание адсорбционных смол уменьшилось почти втрое) доля алкано-циклановых углеводородов возросла с 75,8 до 81,4 объемн. %, что должно благоприятно отразиться на стабильности и весовой теплоте сгорания фракции. [c.141]

    Насыщенные углеводороды можно отделять от ненасыщенных углеводородов хроматографическим разделением на силикагеле. Насыщенную фракцию можно далее разделять на норлЛьные парафины и изопарафины селективной адсорбцией на молекулярном сите типа 5-А [68]. Нормальные углеводороды, содержащие 5—28 атомов углерода, поглощаются количественно, а изоуглеводороды при этом не поглощаются. Как будет показано ниже, нормальные углеводороды можно отделить от изо- и антеизосоединений во время анализа методом ГЖХ, если в газовый поток включить колонку с молекулярным ситом, которую используют как фор-колонку [86] или помещают между аналитической колонкой и детектором [18]. [c.457]

    При эмиграции микронефти из глинистых нефтематеринских город в прилегающие к ним пласты пористых водонасыщенных гесчаников возникает хроматографическое разделение образовавшейся смеси жидких и газообразных углеводородов. Глинистый пласт представляет собой естественную хроматографическую колонку, а газы и низкокипящие углеводороды выполняют роль элюента. В природной хроматографической колонке происходит частичная задержка асфальтосмолистьгх веществ. В песчаный коллектор выносится смесь нефтяных углеводородов с содержанием 5 — [c.58]

    В нефтях и нативных ТНО (т.е. не подвергнутых термодес — трук тивному воздействию) карбены и карбоиды отсутствуют. Под термином "масла" принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 — 500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в т.ч. легкие (моноциклические), средние (эициклические) и полициклические (три и более циклические). Наиболее важное значение представляют смолы и асфальтены. [c.76]

    Механизм извлечения углеводородов в этом процессе 0С, 0 к-ияется тем, что в слое адсорбента имеется несколько адсо])б-циоииых зон и ири промышленных скоростях потока газа адсорбционная зона каждого компонента движется с большей скоростью, чем скорость вытеснения ранее адсорбированного компонента. Поэтому в нромышлеииых условиях получить хроматографическое разделение компонентов невозможно. [c.166]

    При хроматографическом разделении на силикагеле циклановые и алкановые углеводороды десорбируются обычно совместно. В табл. 5 представлены физико-химические свойства выделенных из топлив циклано-алкановых и ароматических фракций. По сравнению с циклано-алкановыми углеводородами ароматические углеводороды имеют наибольшую плотность и наибольшую объемную теплоту сгорания. Они обладают низкими температурами помутнения и кристаллизации. Эти свойства ароматических углеводородов являются положительными. Однако ароматические углеводороды повышают нагарообразование и гигроскопичность топлив, а также имеют малую стабильность при нагревании (за исключением моноциклических с насыщенными алкильными группами), что отрицательно влияет на работу двигателей. С повышением температуры выкипания топлив содержание в них ароматических углеводородов возрастает. Максимальное количество ароматических углеводородов содержится в конечных фракциях топлив. С повышением температуры выкипания возрастает также цикличность ароматических углеводородов (табл. 6). [c.15]

    В зависимости от поставленной задачи метод типового разделения монто варьировать, начиная от простого хроматографического разделения насыщенных и ароматичссюгх углеводородов и кончая весьма трудоемкой комбинацией различных методов разделения. В некоторых особых случаях, когда необходимость решения поставленной задачи оправдывает применение сложных и длительных методов, типовое разделение проводится возможно тщательнее, В качестве примера можно указать на исследование фракций смазочных масел сырой нефти Понка (Оклахома), проведенное Американским нефтяным институтом па Проекту б [36] под руководством Россини, Выделенный концентрат представлял собой 40000 часть исходной нефти. Ясно, что подобные исследования, требующие лшого времени, специального оборудования и высококвалифицированного персонала, могут предприниматься только в исключительных случаях, когда поставленная цель действительно оправдывает дорогостоящий процесс разделения, В каждом отдельном случае метод типового разделения должен быть выбран весьлю тщательно. Какие-то оиределенные правила для выбора метода разделения указать невозможно, хотя наличие оборудования, персонала и времени в этом отношении является решающим фактором. [c.365]

    Несмотря на то, что в настоящее время имеются довольно ограниченные ксличественные данные о точности и надежности метода, предварительные результаты показывают, что точность метода достаточно велика. Это иллюстрируется табл. 2, в которой сопоставлены результаты, полученные в лаборатории Сан Ойл Ко по методу Мартина и Санкииа, с результатами элементарного анализа для ряда смесей бензольных нефтяных углеводородов, полученных хроматографическим разделением и перегонкой, для которых = 1 [40]. [c.385]

    Сафронова Т. П., Жузе Т. П., Сушилин А. В. Закономерности хроматографического разделения при миграций смеси углеводородов нефти в газовой фазе через породы — В кн. Миграция нефти и газа и газожидкостное равновесие газожидкостных систем при высоких давлениях. М.,i 1972, с. 32— 50. [c.158]

    Таким образом, - в высококипящих фракциях нефти, идущих на производство масел, скапливается основное количество серо-органических соединений — обычно 60—707о от содержащихся в исходной нефти. В тех случаях, когда перегонка нефти сопровождается разложением, часть этих соединений, термически менее устойчивых, может теряться в виде сероводорода или переходить из высококипящих фракций в низкокипящие. Однако основная часть сероорганических соединений остается в тяжелых дистиллятах и остатках. При разделении нвфтя1ных погонов с помощью хроматографии- на силикагеле или активной окиси алюминия эти соединения выделяются вместе с ароматическими углеводородами и смолами. Ниже приведены результаты хроматографического разделения на силикагеле средневязких дистиллятов сернистых и малосернистых нефтей (во всех случаях сера сопут- ствует ароматическим углеводородам и смолам) [1]  [c.22]

    Поглощение кислорода раствором пирогаллола А из газа, предварительно освобожденного от кислотных компонентов определение количества поглощенного кислорода Определение производится на газоанализаторе типа ГХЛ определяются сумма кислотных газов (СО,, 50о, НгЗидр.) сумма непредельных углеводородов О2 СО Нз сумма предельных углеводородов и На Хроматографическое разделение компонентов природного газа сочетанием парожидкостной и газо-адсор бционной хроматографии и газохроматографического детектирования разделенных компонентов смеси определяется содержание Н,, Не, N2, О,, СО,, СН , СзНв, зНв, изо-С Нщ, Н-С4НЮ, 30-СдН 2> [c.60]

    Так как в результате химического взаилюдействия может из р-ниться структура сорбируемых молекул, хроматографическое разделение углеводородов нужно проводить в условиях, исключающих или сводящих до минимума это химическое взаимодействие между молекулами углеводородов и сорбенто.м. [c.14]

    Опыты проводились в тех же условиях, т. е. при температуре-315—320 С, в жидкой фазе и с применением в качестве катализатора платины на угле, приготовленной по описанной в литературе-рецептуре [78]. Дегидрогенизации подвергались жидкие парафиновоциклопарафиновые углеводороды, не образующие кристаллических комплексов с тиокарбамидом и выделенные из высокомолекулярной предельной части ромашкинской нефти. Процесс осуществлялся в три стадии при общей продолжительности 30 ч по следующей методике исходную фракцию высокомолекулярных предельных углеводородов нефти нагревали 10 ч с 15—20% катализатора. Количество выделявшегося газа измеряли через определенные промежутки времени (первая стадия) жидкие продукты реакции отделяли от катализатора и подвергали хроматографическому разделению. Во второй стадии при тех же условиях дегидрировали предельные углеводороды, выделенные из катализата первой стадии. Жидкие продукты реакции снова подвергали хроматографическому разделению , на третью стадию дегидрогенизации брали только предельную часть, [c.219]

    Были сняты также спектры поглощения в ультрафиолетовой области для исходной фракции парафино-циклопарафиновых углеводородов и трех групп углеводородов, выделенных при хроматографическом разделении продуктов дегидрогенизации. Растворы фракций парафино-циклопарафиновых углеводородов не дали заметного поглощения при концентрациях 0,06% вес. Спектры поглощения моноциклоароматических и бициклоароматических углеводородов снимались в растворах изооктана концентрациями 10 и 10 молъ л. [c.226]

    Таким образом, проведя реакцию дегидрогенизации парафино-циклопарафиновых углеводородов, зателГ применяя хроматографическое разделение, а также спектральные и химические методы исследования продуктов дегидрогенизации и используя закономерности в изменении физико-химических свойств углеводородов в зависимости от строения, можно получить достоверные экспериментальные данные об элементах структуры высокомолекулярной части парафино-циклопарафиновых углеводородов нефти. [c.228]

    Гордаш с сотрудниками [31 ] предложил методику сульфирования ароматических углеводородов, содержащихся в высококипящих фракциях нефтей (250—475° С), в условиях, практически исключающих протекание побочных реакций (окисление, деструкция и др.). Сульфирование проводилось диоксан-сульфотриоксидным комплексом в растворе дихлорэтана при комнатной температуре в течение 3—4 ч. На примере сульфирования 25-градусных газойле-масляных фракций показано, что в этих условиях 75—80% содержащихся в этих фракциях ароматических углеводородов переходит в соответствующие сульфокислоты. Изменяя условия и продолжительность сульфирования, а также методику извлечения сульфокислот из реакционной смеси и хроматографического разделения их, можно не только извлечь из высокомолекулярной части нефти ароматические углеводороды в нативном состоянии, но и дифференцировать их на одно- [c.282]

    Если при хроматографическом разделении отсутствие сернистых соединений во фракциях предельных углеводородов можно объяснить тем, что алки.п- и циклоалкилсульфиды как соединения, более полярные, чем предельные углеводороды, переходят во фракции ароматические, то в случае молекулярной перегонки это соображение уже не играет существенной роли. [c.336]

    При разделении смеси углеводородов и сернистых соединений можно сначала подвергать смесь окислению [96), а затем хроматографическому разделению. Как правило, сернистые соединения окисляются легче углеводородов, поэтому при правильном выборе условий процесса можно провести окисление с достаточной степенью избирательности, т. е. осуществить окисление атома серы с переводом сульфидов в сульфоксиды (илп сульфоны), по возможности, не задевая углеводородной части. Сернистые соединения, содержащие в молекуле сульфоновую или сульфоксидную группу, уже сравнительно легко можно отделить от углеводородов методом хроматографии. Наиболее трудно отделить сернистые соединения тиофенового тппа от близких к ним по строению ароматических углеводородов, так как даже но склонности к окислендю эти две группы соединений очень мало различаются между собой поэтому проведение избирательного окисления тиофеновых соединений в смеси с ароматическими углеводородами оказывается весьма трудной задачей. [c.363]

    Установле1ш, что применительно к нефтепродуктам с высоким йодным числом сернокислотный метод iIeтoчeJI . Хорошие результаты дает сочетание хроматографического нлп сернокислотного метода с методом гидрирования. Гидрирование в мягких условиях и в присутствии алюмокобальтмолибденового катализатора при 350 С и начальном давлении водорода 7,5 МПа (75 кгс/см ) обесие-чивает нрактически полное насьщение непредельных углеводородов (без измепения ароматических). Обработка серной кислотой или хроматографическое разделение на силикагеле светлого нефтепродукта до и после гидрирования также дает возможность судить о раздельном содержании в пем ароматических и непредельных углеводородов .  [c.107]

    В. П. Соловьев и Н. И. Черножуков [9] исследовали кинетику изменения состава лакообразных веществ, образующихся ирп окислении остаточного масла и с добавлением к нему донолнитель ного количества полициклических ароматических углеводородов, извлеченных из того же масла. Анализ данных окисления в тонком слое прп 250° в течение 1—3 час. показал, что содержание в масле 12% ароматических углеводородов, десорбируемых при хроматографическом разделении на силикагеле бензолом, резко тормозит окисление нафтенов, а также малоциклпческих ароматических углеводородов. Эксплуатационные свойства фракций нафтенов, ароматических углеводородов и смол были исследованы лабораторными методами С. Э. Крейном и М. С. Боровой [И]. [c.373]

    Смесь углеводородов, сернистых, азотистых и кислородных соединений разделяют последовательно дёсорбентами с возрастающей полярностью. Петролейным эфиром (изопентаном, изооктаном) отделяют сначала парафино-нафтеновые углеводороды, а затем ароматические углеводороды вместе с основной частью сернистых соединений. После этого бензолом, спирто-бензольной смесью, этанолом, ацетоном и др. отделяют кислородные соединения и смолы. Нри хроматографическом разделении нефтяных дистиллятов основное количество сернистых соединений (но не продуктов их окисления и уплотнения) выделяется вместе с ароматическими углеводородами. Получают сернисто-ароматический концентрат, дальнейшее разделение которого сопряжено с бояьшими трудностями. [c.99]

    Выделенный сернисто-ароматический концентрат был вторично разделен на силид агеле. В качестве десорбентов были взяты петролейный эфир, бензол, четыреххлористый углерод (для выделения соответственно моноциклических ароматических углеводородов, сернистых соединений, бициклических ароматических углеводородов). Смолы вытесняли этанолом. Двукратное хроматографическое разделение керосино-газойлевых фракций позволило получить смеси с содержанием сернистых соединений 65— [c.103]

    Связь между серой и ароматическими углеводородами настолько прочна, что хроматографическими методами разделить сернистые и высшие ароматические углеводороды невозможно. Сера в этих соединениях малоактивна и скорее всего входит в цикл, как в тиофене и т. п. соединениях. Сера в этих соединениях двувалентна, но если перевести ее в шестивалентную окислением перекисью водорода, образуются сульфоны. Сульфоны, полученные из сернистых соединений, отличаются высокой адсорбционной способностью, так что после окисления возможно более или менее полное хроматографическое разделение сернистых соединений и ароматических углеводородов. [c.177]

    О методике хроматографического разделения нафтеновых и ароматических углеводородов масляных фракций нефти // Известия вузов. Сер. Нефть и газ , 1960, № 5, с. 93—100 (Казакова Л. П., Щегрова К, А.). [c.51]


Библиография для Углеводороды хроматографическое разделение: [c.107]   
Смотреть страницы где упоминается термин Углеводороды хроматографическое разделение: [c.106]    [c.24]    [c.93]    [c.206]    [c.521]    [c.129]    [c.276]    [c.280]    [c.369]    [c.24]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.956 , c.963 , c.967 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.956 , c.963 , c.967 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды, хроматографический



© 2025 chem21.info Реклама на сайте