Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина на носителях дегидроциклизация

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]


    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые инициируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, который обладает кислотными свойствами и катализирует реакции изомеризации и крекинга углеводородов. На катализаторах риформинга также протекают реакции дегидроциклизации парафиновых углеводородов. [c.348]

    Парафины подвергаются также дегидроциклизации на катализа торах риформинга по бифункциональному механизму дегидрирование на платине, циклизация образовавшихся непредельных углеводородов на кислотных участках носителя. Наглядное подтверждение реальности такого механизма можно найти в работе [681. Из табл, 1,5 видно, что платинированный уголь не катализирует реакцию дегидроциклизации я-гептана, если к последнему добавить 0,01 % тио-фена (по массе, в пересчете на серу), но сохраняет высокую дегидрирующую способность. Концентрация гептенов не меняется при добавлении тиофена к гептану и близка к равновесной в примененных условиях. Не подвергается дегидроциклизации н-гептан при пропускании над оксидов алюминия. Однако реакция дегидроциклизации протекает, если н-гептан с указанной выше примесью тиофена пропускают над смесью платинированного угля и оксида алюминия. Суммарный выход толуола и алкилциклопентанов составил 70% от выхода, полученного при дегидроциклизации чистого н-гептана (без примеси тиофена) над платинированным углем. [c.35]

    Биметаллические катализаторы более активны и стабильны. В их присутствии селективность дегидроциклизации парафинов повышается до 70%, что значительно увеличивает выход ароматических углеводородов. Высокая стабильность катализаторов позволяет проводить процесс при меньшем давлении (0,8— 1,5 МПа). В промышленном масштабе наибольшее распространение получили платино-рениевые и платино-германиевые катализаторы [84—86]. Наличие второго металла в составе катализатора препятствует агломерации платины на поверхности носителя и снижению ее дегидрирующей активности. [c.176]

    В ходе многолетних исследовательских работ по реакции дегидроциклизации были изучены различные катализаторы. Исследовались окислы хрома ла окисноалюминиевом носителе [29, 31] и без носителей [52], смеси окислов хрома, ванадия и молибдена на окисноалюминиевом носителе [31], смеси окислов хрома, церия и калия на окиси алюминия [1 ], окислы хрома и сурьмы на окиси алюминия [24], соли молибденовой кислоты [57], окислы молибдена на окиси алюминия [29, 57, 61] и окиси хрома [1, 57] и платина [42] на угле. Было обнаружено, что катализаторы на носителях имеют больший срок службы, чем катализаторы без носителей. Это, вероятно, объясняется повышением их стабильности при процессах регенерации. Установлено, что алюмохромовый катализатор в сильной степени подвержен влиянию давления и дает повышенные степени превращения при низких давлениях. В противоположность этому на алюмомолибденовых катализаторах степени превращения при высоких и низких давлениях приблизительно одинаковы. [c.183]


    Катализатор риформинга состоит из носителя - оксида алюминия, металлического компонента — платины и галогена — кислотного промотора. В полиметаллические катализаторы вводят некоторые другие металлы, выполняющие функцию промотора. Химизм процессов риформинга на катализаторе состоит в протекании реакции изомеризации, дегидроциклизации и гидрокрекинга. Направление процесса зависит как от исходного сырья, так и технологических факторов. [c.264]

    Носитель в катализаторе, с одной стороны, служит для распределения и диспергирования платины с целью более эффективного его использования, с другой стороны, — катализирует реакции изомеризации и крекинга. Определенное влияние оказывает носитель на протекание реакций дегидроциклизации и реакций уплотнения, приводящих к образованию кокса. [c.863]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые катализируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, обладающий кислотными свойствами и катализирующий реакции изомеризации и крекинга углеводородов. На катализаторах риформинга протекают также реакции дегидроциклизации парафиновых углеводородов. В отечественной промышленности используют алюмоплатиновые катализаторы АП-56 и АП-64, которые содержат соответственно 0,65% и 0,64% платины, нанесенной на у-А120з. [c.385]

    Варьирование способа приготовления платинированного угля показало, что его активность в реакциях С..-дегидроциклизации и расширения пятичленного цикла, в отличие от дегидрогенизации циклогексана, не зависит от температуры формирования катализатора в интервале температур от —10 до +40° С. При уменьшении процентного содержания платины активность катализаторов по отношению к С ,-дегидроциклизации понижается и при содержании ниже 10% платины катализаторы практически не вызывают этой реакции. Замена угля другими носителями (окись алюминия, силикагель) также приводит к катализаторам, неактивным для С -дегидроциклизации. Сопоставление полученных результатов с литературными данными показывает, что реакции Сз-дегидроциклизации и расширения пятичленного цикла, [c.295]

    Показано [69], что удельная поверхность платины в Pt/ существенно зависит от температуры предварительной термической обработки угля, использованного в качестве носителя. При этом меняется и активность катализатора в реакции Св-дегидроциклизации изооктана, причем по-разному в зависимости от способа нанесения платины. Так, при приготовлении Pt/ по способу, описанному в работе [66], оптимальной температурой предварительной обработки угля являегся 300°С. Однако для Pt/ , полученных пропиткой угля раствором Н2Р1С1е с дальнейшим восстановлением водородом, наиболее благоприятным оказалось предварительное прокаливание угля при 1400°С. [c.200]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]

    В соответствии с суждаемой ассоциативной схемой, процесс Сб-дегидровдклизации алканов не зависит от концентрации активного металла в металлическом катализаторе на носителе. Поэтому эта схема может служить основой для истолкования с единой точки зрения экспериментальных результатов, полученных как при высоком, так и при низком содержании металла в катализаторе, хотя каждый из этих случаев имеет свои особенности. Так, в присутствии (20% Pt)/ молекула углеводорода плоско адсорбирована пятью углеродными атомами в междоузлиях решетки платины [63, 64], в случае же (0,6% Р1)/А120з адсорбция алкана может проходить другим способом, в частности по дублетной схеме. Предлагаемый механизм с участием адсорбированного на катализаторе водорода в непосредственном акте Сб-дегидроциклизации хорошо согласуется с данными, приведенными в работах [84, 108]. [c.231]


    В работах [171, 172] термодесорбционным и кинетическим методами изучено взаимодействие н-гептана с Р1, нанесенной на А12О3, с носителем (А Оз), а также с модифицированными Р1-катализаторами — (Р1— РЬ)/ /АЬОз и (Р1—5п)/А120з. При нагревании образцов Р1-катализатора с поверхности десорбируются исходный н-гептан и продукты дегидроциклизации — толуол и бензол. Определены температурные интервалы десорбции и число активных центров. На основании результатов термодесорбционных и кинетических исследований предположили наличие на поверхности Р1/АЬ0з не менее двух типов активных центров платины. На одном из них, [c.251]

    При изучении роли кристаллов платины с различной структурой в механизме процесса дегидроциклизации н-геисана на алюмоплатиновых катализаторах был сделан вывод [179], что в реальных условиях дегидроциклизации, когда процесс сопровождается крекингом и энергичным коксообразованием, скорость и направление циклизации н-гексана зависят от размера кристаллов Pt на носителе. Наиболее благоприятными для осуществления реакции на изученном образце -АЬОз являются кристаллы Pt размером 1,1 —1,4 нм и степенью дисперсности H/Pt 0,6—0,8. При сравнении результатов ароматизации н-гексана и гексена-1 на изученных алюмоплатиновых катализаторах предположили, что электронодефицитные частицы Pt прежде всего могут играть роль центров закоксовывания алюмоплатиновых катализаторов, на которых происходит крекинг ненасыщенных углеводородов, склонных к реакциям присоединения и расщепления. Вместе с тем полагают, что ароматизация н-гексана осуществляется путем непосредственного замыкания шестичленного цикла с одновремен- [c.253]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    III группа) и кадмий (из II группы). К биметаллическим катализаторам относят платино-рениевые и платино-иридиевые, содержащие 0,3-0,4 % мае. платины и примерно столько же Ке и 1г. Рений или иридий образуют с платиной биметаллический сплав, точнее кластер, типа Р1-Ке-Яе-Р1-, который препятствует рекристаллизации — укрупнению кристаллов платины при длительной эксплуатации процесса. Биметаллические кластерные катализаторы (получаемые обычно нанесением металлов, обладающих каталитической активностью, особенно благородных, на носитель с высокоразвитой поверхностью) характеризуются, кроме высокой термостойкости, еще одним важным достоинством — повышенной активностью по отношению к диссоциации молекулярного водорода и миграции атомарного водорода (спилловеру). В результате отложение кокса происходит на более удаленных от металлических иентров катализатора, что способствует сохранению активности при высокой его закоксованности (до 20 % мае. кокса на катализаторе). Из биметаллических катализаторов платипо-иридиевый превосходит по стабильности и активности в реакциях дегидроциклизации парафинов не только монометаллический, но и платино-рениевый катализатор. Применение биметаллических катализаторов позволило снизить давление риформинга (от 3,5 до 2-1,5 МПа) и увеличить выход бензина с октановым числом по исследовательскому методу до 95 пунктов примерно на 6 %. [c.282]

    Первоначально процесс риформинга -проводился на алюмомо-либденовых катализаторах, которые обеспечивали в основном только дегидрирование. Выход ароматических углеводородов был очень низким — от 25 до 30%. Затем перещли к использованию платиновых катализаторов на алюмооксидных носителях (с содержанием платины 0,4—0,65%)- Эти катализаторы были бифункциональными оксид алюминия вследствие амфотерности способствует реакциям изомеризации и гидрокрекинга, платина же — катализатор дегидрирования. Для усиления кислотной функции алюмопла-тиновые катализаторы промотировали добавкой фтора или хлора. Переход на платиновые катализаторы позволил частично вовлечь в переработку парафины, усилив реакции дегидроциклизации выход ароматических углеводородов при этом повысился до 35— 40%. На отечественных установках получили распространение платиновые катализаторы АП-56 и АП-64, промотированные соответственно фтором и хлором [79]. [c.174]

    В условиях дегидрогенизационного катализа алкилбензолы претерпевают дегидроциклизацию с образованием нафталина, инда-на или их гомологов, дегидрирование, изомеризацию и расщепление боковой алкильной цепи. Соотношение этих реакций в значительной степени зависит от природы катализатора. При этом с увеличением кислотности носителя в продуктах-реакции повышается доля углеводородов с пятичленным циклом. Это влияние кислотности катализатора на соотношение продуктов Се- и Сз-дегидроциклизации особенно ярко проявляется в случае превращения н-бутилбензола на платине и на носителях различной кислотности (5102, АЬОз и А Оз—З Ог). На основании работ Б. А. Казанского с сотр. сделан вывод о том, что образование пятичленного цикла на Р1/С при 310 °С протекает путем непосредственного замыкания цикла между углеродными атомами боковой цепи и бензольного кольца, минуя стадию олефинообразования. Однако при более высокой температуре на Pt/Al20з определяющую роль может играть и образование непредельных углеводородов [97]. [c.138]

    На бифункциональных алюмоплатиновых катализаторах в условиях риформинга дегидроциклизация парафинов — процесс сложный, включающий ряд последовательно и параллельно идущих реакций [6-8], главным образом дегидрирование на платине, Сз-циклиза-цию образовавшихся непредельных углеводородов на кислотных участках носителя  [c.862]

    Парафиновые и олефиновые углеводороды, содержащие шесть и более углеродных атомов в прямой цепи, могут быть подвергнуты дегидрированию и циклизации до ароматических углеводородов с тем же числом углеродных атомов. Для осуществления этой реакции можно использовать два типа катализаторов 1) окислы металлов и 2) восстановленные металлы. В качестве окисных катализаторов применяют главным образом окись хрома, окись молибдена и окись ванадия в чистом виде или еще лучше на носителе, например на окиси алюминия. В качестве металлических катализаторов применяют металлы vni группы периодической системы, главным образом никель или платину на носителе типа окиси алюминия. При дегидроциклизации на поверхности окисных катализаторов наряду с образованием ароматических соединений происходит образование олефинов. Образование олефинов представляет собой, по-видимому, промежуточную стадию процесса их выход, как правило, не превышает 10%. Исходный углеводород можно полностью превратить в ароматический, применив соответствующий катализатор. Наиболее эффективным катализатором в случае проведения реакции при атмосферном давлении является окись хрома (СГдОд), которую обычно наносят на окись алюминия либо путем пропитки, либо совместным осаждением обоих окислов. [c.141]

    С 40-х годов в практику повышения антидетонационных качеств бензинов был введен гидрореформинг, или гидроформинг, т. е. реформинг с применением давления водорода. В 50-х годах этот процесс после целого ряда патентных рекомендаций стали осуществлять на платине, находящейся на алюмосиликатном носителе. Такой вариант реформинга получил название плат-форминга. Легко видеть, что в основе платформинга находятся процессы, систематически изучаемые школой Зелинского, в частности Казанским, Шуйкиным, Платэ, Новиковым и другими. Эти процессы состоят из реакций дегидрогенизации циклогексаалка-нов, дегидроциклизации парафинов, метиленного распада углеводородов, алкилирования метиленовыми бирадикалами, гидрогенолиза и т. д. [c.174]

    Кислотной функцией обладает носитель контакта, который служит, с одной стороны, для распределения и диспергирования платины, а с другой — катализирует изомеризующую и гидрокрекирующую способность катализатора. Определенное влияние оказывает носитель и на протекание реакции дегидроциклизации и реакций уплотнения, приводящих к образованию кокса. [c.41]

    Уточняется механизм изомеризации и дегидроциклизации парафиновых углеводородов в условиях каталитического риформинга на основе подробного кинетического анализа экспериментальных данных, полученных ранее различными авторами. Показано, что гидрокрекингу подвергается вторичный ион карбония, образованный изоолефипом, а не первичный, как это предполагалось Миллсом с сотрудниками. Установленная автором схема реакции позволяет сделать практические рекомендации по повышению избирательности процесса в желаемом направлении за счет селективного отравления или подбора носителя для платины. [c.223]

    Каталитическая дегидроциклизация парафиновых углеводородов осуществляется в присутствии эффективного катализатора. В настоящее время изучено большое количество катализаторов. В основном это окислы металйов, относящихся к трем группам периодической системы — VI (хром, молибден), V (ванадий) и IV (титан). Наибольшее применение имеют окиси хрома и молибдена на носителях в присутствии добавок (платина, палладий, церий и кобальт). Установлено, что дегидроциклизация на алюмо-хромовом катализаторе в значительной степени подвержена влиянию давления при низких давлениях степень превращения сырья повышается. В противоположность этому, на алюмомолибденовых катализаторах степени превращения при высоких и низких давлениях примерно одинаковы. [c.154]

    Подробное рассмотрение данных, полученных при изучении зависимости между содержанием платины в катализаторе и его активностью в Са-дегидроциклизации, позволило установить, что с изменением содержания платины в катализаторе число молей изооктана, циклизующихоя за 1 час на 1 грамм-атоме платины, проходит через максимум (рис. 3) при 10%-ном содержании платины. Аналогичное явление наблюдалось [17] (правда, в жидкой фазе) при гидрировании пиперональоксима и хинона на палладированном угле, причем для каждой из этих реакций было отмечено свое оптимальное содержание металла на носителе. Мы предположили, что уголь участвует либо в составе активного центра, либо в его формировании. Чтобы проверить эту гипотезу, мы приготовили несколько платиновых катализаторов на окиси алюминия и силикагеле. Оказалось, что эти катализаторы почти не вызывают Са-дегидроциклизации изооктана, хотя и способны дегидрировать циклогексан. Интересно, что концентрация платины на поверхности зерен окиси алюминия была очень высокой зерна катализатора в разломе были совсем черными в тонком наружном слое, глубже — серыми, а в центре почти белыми. [c.298]


Смотреть страницы где упоминается термин Платина на носителях дегидроциклизация: [c.182]    [c.486]    [c.492]    [c.140]    [c.85]    [c.769]    [c.239]    [c.75]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидроциклизация

Платина на носителях



© 2025 chem21.info Реклама на сайте