Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомы время жизни

    Именно условность обрыва и объясняет не совсем обычную роль радикала НО2. С точки зрения формальной кинетики реакция 11+ есть реакция третьего порядка, хотя некоторые авторы [72, 76] полагали, что процесс 11+ непростой и его можно представить в виде комбинации двух бимолекулярных стадий H+Oj НО2 и НО -Ь М -> НО2 -И М. Экспериментально показано, однако [108], что время жизни HO.j при Т > 800 К и Р 5 ат должно быть порядка 10 с, т. е. что третий порядок реакции значительно более вероятен чем второй. [c.275]


    Такой переход окажется особенно резким, если, во-первых, будет очень мало число активных центров и) , ежесекундно создаваемых в единице объема не в ходе продолжения цепей, а тепловым движением из исходных веш,еств, и если, во-вторых, будет мало время развития одного звена цепи Ат (или, что то же самое, время жизни активного центра). Первое — малая величина гоа — приводит к тому, что скорость стационарной разветвленной реакции (р —8>0) может быть неизмеримо малой, так как каждая цепь имеет конечную длину, а число цепей в силу малости Юд очень невелико. Второе же — малая величина Ат — скажется, когда в результате изменения одного из перечисленных выше параметров системы, например, давления, будет достигнуто равенство менаду вероятностями обрыва и разветвления. В этот момент реакция теряет стационарный характер а так как Ат очень мало, то даже при малом значении реакция быстро достигнет больших значений скорости. Если разность вероятностей обрыва и разветвления, как функция давления, дважды приобретает нулевое значение, то и дважды будет осуществляться такой переход. [c.54]

    Каждая молекула, содержащая атом водорода, имеет характерную для этого атома линию поглощения в спектре ЯМР- Если в растворе находятся молекулы АН и ВН, не обменивающиеся протонами, то в ЯМР-спектре раствора есть две полосы поглощения, обусловленные поглощением энергии протонами молекул АН и ВН. Обмен протонами между АН и ВН меняет спектр. Если [АН] — [ВН1, то время жизни Ан > вн, Тан = кл d in [AHl/d/. [c.348]

    Очевидно, чем больше времени атом проводит в -м состоянии, тем уже уровень энергии данного состояния. Времена жизни возбужденных электронных состояний атома, как правило, равны десяткам наносекунд, поэтому ширины уровней этих состояний соответствуют значениям порядка см . [c.12]

    Бензофенон — нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет — триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и образуют кетильный радикал (Я = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет — триплетное поглощение нафталина Х = А 2 нм). Используя величину е для кетильных радикалов (3220 л моль см ), можно по уменьшению оптической плотности на длине волны 545 нм и по оптической плотности триплет — триплетного поглощения нафталина определить коэффициент экстинкции для нафталина  [c.192]


    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (IX. 15), то ширина линии была бесконечно малой. Однако энергия уровня не есть точно зафиксированная величина. Неопределенность в энергии уровня б связана со временем жизни частицы Дт на соответствующем уровне соотношением неопределенностей б Ат й, где Дт определяется величинами Г] и Т . Ширина линии определяется величиной ЬЕ (рис. 80), и она тем больше, чем меньше Дт. Таким образом, малые времена жизни возбужденного состояния приводят к уширению спектра. С другой стороны, очень большие времена жизни также вызывают уширение спектра вследствие насыщения. [c.235]

    Вторичные реакции являются обычными термическими реакциями фотохимические они лишь в том смысле, что вступающие в реакцию частицы не появились бы в отсутствие света. Некоторые частицы встречаются гораздо чаще как промежуточные в фотохимических реакциях, нежели в термических. Сюда относятся свободные атомы и радикалы, а также электронно-возбужденные частицы. Такие промежуточные частицы обычно высокоактивны, и их время жизни в реакционной системе соответственно мало. Однако активность не следует путать с нестабильностью свободный радикал или атом в изолированном состоянии имели бы совершенно нормальную стабильность, тогда как время жизни электронно-возбужденной частицы определяется вероятностью потери энергии путем излучения. Образующиеся атомы и радикалы могут также иметь некоторый избыток энергии например, при фотолизе кетена метилен может выделяться как в основном, так и в возбужденном электронном состоянии в зависимости от длины волны поглощаемого излучения. [c.18]

    Несколько экспериментов дало прямые доказательства, что скрытое изображение представляет собой металлическое серебро в галогенидных зернах, но во много раз меньших концентрациях, чем в отпечатанном виде. С помощью методики, способной регистрировать изменения оптической плотности порядка 10 , можно обнаружить оптическое поглощение за счет появления серебра в областях скрытого изображения даже на пороге предельно малых экспозиций. Существует также заметное сходство влияния окружающих факторов (например, электрических полей или кристаллических дефектов см. ниже) на локализацию отпечатавшихся серебряных частиц и центров проявления. Поэтому наше обсуждение первичных фотохимических процессов будет касаться преимущественно образования серебра в результате экспонирования и последующего проявления. При этом предполагается, что процессы образования скрытого изображения фотохимически идентичны упомянутым процессам, но дают во много раз меньшее количество металлического серебра. Однако есть и различия. Важным свойством процесса образования скрытого изображения является падение чувствительности эмульсии при очень низких интенсивностях света (нарушение закона обратной пропорциональности чувствительности и экспозиции), которое свидетельствует о существовании многоквантового процесса. Доказано, что обычно одиночный атом серебра в галогенидной решетке нестабилен, его время жизни составляет лишь несколько секунд. Для получения стабильной системы требуются по крайней мере два атома, если только нет заранее введенного стабилизирующего центра. [c.246]

    Из этого рисунка видно, что ширина линии определяется величиной ДЕ и тем больше, чем больше последняя и, следовательно, чем меньше Ат. Таким образом, малые времена жизни возбужденного состояния приводят к уширению спектра. С другой стороны, очень большие времена жизни, как указывалось выше, также вызывают уширение спектра вследствие насыщения. [c.97]

    Согласно принципу неопределенности Ат-А л й время жизни в данном энергетическом состоянии влияет на определенность значения энергии в этом состоянии. Сле- [c.117]

    Бензофенон-нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет-триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и дают кетильный радикал (Х = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет-триплетное поглощение нафталина ( =412 нм). Используя известную величину е для ке- [c.318]

    Атом любого элемента следует рассматривать как систему, способную возбуждаться и переходить в новое состояние, определяемое квантом поглощенной энергии. Это состояние атома создает новое расположение электронов, переход которых на следующий подуровень или уровень означает поглощение энергии, а возвращение в исходное состояние — релаксация — сопровождается выделением энергии. Время жизни возбужденного атома чрезвычайно мало (10 —10 с), однако если атом, находясь в возбужденном состоянии, образует новые связи (вступает в химическое соединение), то в таком случае это состояние атома может сохраняться неопределенно долго. При больших энергиях возбуждения полученное соединение будет иметь свойства окислителя (например, перманганат калия, хлорная кислота и т. д.). [c.54]


    ТОГО, ЧТО при комнатной температуре спектрометр ЯМР видит две отдельные метильные группы, а при повышенной — перестает различать их. На молекулярном уровне причиной наблюдения двух линий при комнатной температуре и одной линии при повышенной является заторможенное вращение вокруг связи С—N (см. ниже). При медленном вращении спектрометр видит одну метильную группу в цис , а другую — в траке-положении к атому водорода группы НС(0). При повышенной температуре вращение ускоряется, и спектрометр фиксирует только усредненное состояние. Важно отметить, что вращение вокруг связи не должно полностью прекращаться, чтобы спектрометр мог фиксировать две различные метильные группы. Однако необходимо, чтобы время пребывания метильной группы в каждом из двух состояний ( Время жизни ) было больше определенного периода, который (по аналогии с фотографией) можно было бы назвать выдержкой . [c.564]

    Имидазол в данных условиях подвергается И—В-обмену примерно в десять раз быстрее, чем оксазол и тиазол. Следовательно, реакция обмена осуществляется через промежуточный илид(1), образующийся путем протонирования по Ыз-атому и последующего депротонирования по Сг-атому под действием метилат-аниона. Время жизни илида (1) очень незначительно — он сразу захватывает дейтерон из раствора, осуществляя, таким образом, обмен. Обмен у оксазола и тиазола, по-видимому, происходит по аналогичной [c.338]

    Если время жизни промежуточного соединения достаточно мало, чтобы реакция протекала по механизму с предварительным образованием комплекса, в котором молекула катализатора обладает правильной ориентацией для последующего переноса протона, то в реакциях е-з-типа катализ обязательно должен включать образование водородной связи с молекулой НА. Если при этом карбонильный ато.м кислорода в переходном состоянии обладает достаточной основностью, чтобы нарушить связь Н—А, то величина а будет положительна. [c.124]

    Вернемся теперь к рассмотрению спектра 1,2-дибромпропионовой кислоты, который уже обсуждался в разд. 3.3. Молекула имеет всего шесть возможных конфигураций, составляющих энантиоморф-ные пары однако достаточно рассмотреть только три конформации VII—IX, так как их зеркальные отражения дают идентичные спектры. Как указывалось выше, такой спектр можно приблизительно рассматривать как случай спин-спинового взаимодействия АВХ, в котором метиленовые протоны образуют группу АВ, а мети-новый атом водорода соответствует относительно далекому протону X. В конформации IX большие группы находятся рядом и, вероятно, поэтому она имеет такую высокую энергию и, следовательно, такое короткое время жизни, что не вносит заметного вклада [c.81]

    Во всех известных случаях комплекс образуется и разрушается настолько быстро, что невозможно записать отдельно сигналы водорода в свободной молекуле Айв комплексе А-В вместо этого наблюдается только один сигнал, соответствующий атому водорода в среднем окружении. Пусть равновесная смесь содержит п молей комплекса А-В и 1 — п молей свободного А тогда время жизни атома водорода распределится между комплексным и свободным состояниями в отношении п (1 — п) и химический сдвиг приобретет соответствующее значение. Однако сдвиг будет зависеть от температуры, а также от концентраций веществ А и В, так как эти факторы влияют на состояние равновесия и поэтому изменяют среднее окружение. Путем систематического изменения концентрации можно, применив метод экстраполяции, найти сдвиг, характерный для комплекса А-В. [c.82]

    При построении модели аэрозолей интерес представляет определение влияния индустриальных источников загрязнений на загрязненность атмосферы вдали от них. Такого рода исследования были проведены по программе комплексного энергетического эксперимента в районе Запорожья, а затем в районе Тбилиси и Алма-Ата (табл.8). Влияние городов обнаруживалось на расстояниях в несколько километров и на высотах не менее 3 км [41]. Были исследованы аэрозольные слои (дымовые купола) над этими городами. Компоненты антропогенных и естественных аэрозолей, содержащие железо, так же, как и сажа, весьма эффективно поглощают солнечную радиацию. Возможно, зто способствует возникновению инверсионных слоев в атмосфере, особенно в промышленных районах, что ведет, в свою очередь, к еще большему накоплению аэрозольных и газовых загрязнений. Измерения химического состава аэрозолей в Запорожье, Рустави и Алма-Ате показали высокое содержание сажевых частиц в их атмосфере от 10 до по массе от общего содержания органических веществ. В центре Ленинграда содержание сажевых частиц в отдельных измерениях достигало 30-405 от общего содержания аэрозольных частиц (по массе). Не обнаружено высокого содержания аниона [ 50 Во всех названных городах оно в основном не превышало 5 мкг/м . (Следует отметить, что данные были получены путем химического анализа фильтров, на которых могло не остаться легкоиспаряющейся серной кислоты Значения массовых концентраций Ге,А1,Мд,Мп в отдельных пробах сильно изменялись, что свидетельствует о присутствии в городском воздухе гигантских частиц, содержащих химические соединения этих элементов. Время жизни таких частиц в атмосфере должно быть весьма непродолжительным. [c.47]

    Для насыщенных паров воды при комнатной температуре 2 составляет около 10 2 молекул/см -с и в состоянии равновесия равно числу молекул, испаряющихся в 1 с, т. е. скорости испарения. Отсюда можно заключить, что среднее время жизни молекулы на поверхности раздела вода — пар равно примерно 1 мкс. У очень малолетучего твердого тела, например вольфрама, упругость паров которого при комнатной температуре оценивается величиной атм, I падает до 10 ато- [c.201]

    Атомы в комплексе соверщают колебания по различным направлениям, но, как сказано, существенны колебания вдоль линии валентных связей (это направление колебаний называют координатой реакции). Можно рассмотреть относительное смещение атомов, представив, что первый и третий атом неподвижны, а второй приближается то к первому, то к третьему. В конце одного колебания при сближении атомов Вг и Н комплекс распадается. Время жизни комплекса обратно пропорционально частоте колебаний V. В течение этого времени комплекс находится в квазистационарном равновесии с исходными частицами. Рассмотрим такое равновесие в общем виде А + В 5 Х+, где А и В — исходные частицы Х+ — активированный комплекс. [c.239]

    Обозначим через б вероятность разветвления цепи, а через Р — вероятность ее обрыва. Если время жизни звена цепи (т. е. время между двумя последовательными звеньями цепи) равно At, то число разветвлений / = б / Ат, а число обрывов g = Р /Дт. E j H далее в единицу времени в единице объема возникает п активных центров, то fn — число разветвлений, а gn — число обрывов цепей в единицу времени в единице объема. Обозначим через По число активных центров, возникающих в результате реакций зарождения цепи. Тогда [c.273]

    Согласно квантовой механике излучение (поглощение) происходит только при переходе из одного стационарного состояния в другое. При этом изменяется распределение электронной плотности, что с классической точки зрения отвечает появлению дипольного момента в акте перехода. Анализ показывает, что атомная (молекулярная) система под влиянием возмущения, изменяющегося во времени, например под влиянием периодически изменяющегося электромагнитного поля (света), может совершать переходы из одного стационарного состояния в другое, пог.нощая при этом квант энергии г = км = = Е"—Е . Время перехода ничтожно коротко. Время жизни в возбужденном состоянии около 10 с (за исключением особых случаев). Возвращаясь в основное состояние, атом (молекула) изучает квант с энергией е = /IV, и в спектре испускания наблюдается линия с частотой [c.35]

    Атом любого элемента следует рассматривать как систему, способную возбуждаться и переходить в новое состояние, определяемое квантом поглощенной энергии. Это состояние атома создает новое расположение электронов, переход которых на следующий подуровень или уровень означает поглощение энергии, а возвращение в исходное состояние — релаксация — сопровождается выделением энергии. Время Жизни возбужденного атома чрезвычайно мало (10 — 10 с), однако если атом, находясь в возбужденном состоянии, образует новые связи (вступает в химическое соединение), то в таком случае это состояние атома может сохраняться неопре- [c.53]

    При энергетическом возбуждении атома в электрической дуге, в искре, в пламени его электронная энергия возрастает и он переходит из основного (невозбужденного) состояния в другие (возбужденные) состояния. Время жизни возбужденного состояния невелико ( 10 с). Атом, теряя энергию возбуждения в виде излучения (эмиссии), возвращается либо в исходное основное состояние (резонансное излучение), либо в какое-то другое состояние, лежащее по энергии выше основного состояния. Каждой такой потере энергии возбуждения атома соответствует линия (резонансная или нерезонансная) в спектре его излучения при определенной длине волны. Так как возбужденных состояний у атома может быть очень много, то в спектрах исхтускания атомов может наблюдаться много линий (до нескольких сотен и даже тысяч). Каждый атом имеет [c.518]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (1.15), ширина линии была бы бесконечно малой. Однако энергия уровня не фиксирована точно. Неопределенность в энергии уровня бЕ связана со временем жизни частицы Ат на соответствующем уровне соотношением неопределенностей бЕАх а, где Ат определяется величинами и 7г. Как видно из рис. 1.3, ширина спектральной линии определяется величиной б , и она тем больше, чем меньше Ат. Таким. образом, малое время жизни возбужденного состояния приводит к уширению спектра. С другой стороны, очень большое время жизни вызывает уширение спектра вследствие насыщения. [c.21]

    Поэтому многие специалисты в области физической химии и химической физики используют несколько более общее определение свободных радикалов они рассматривают в качестве свободных радикалов любые нестабильные частицы (атом, молекула или ион), т. е. любые частицы, которые имеют короткое время жизни в газовой фазе в обычных лабораторных условиях. Это определение исключает О2, N0, но охватывает С2, СН2, СНР,. .. даже в сйн-глетных состояниях. Оно также включает атомарные и молекулярные ионы. Здесь мы будем придерживаться этого несколько более широкого определения понятия свободных радикалов, так как наша цель — обсуждение особенностей спектров и строения корот-коживущих (нестабильных) частиц. Несмотря на то, что большинство свободных радикалов, которые будут рассмотрены, имеют время жизни, меньшее миллисекунды, следует ясно представлять себе, что четкой границы не существует действительно, ряд обсуждаемых ниже радикалов характеризуется временем жизни порядка 0,1 с. [c.10]

    Рекомбинация двух частиц с излучением возможна также при обращенном процессе Оже (при обращенной предиссоциации или преионизации). В этом случае две частицы (радикал + радикал, радикал + атом, атом + атом или ион + электрон) приближаются друг к другу с энергией дискретного состояния объединенной системы. Затем может произойти безызлучательный переход в это дискретное состояние, что соответствует обратным направлениям горизонтальных стрелок на рис. 102, б. Через очень короткое время жизни снова произойдет безызлучательный переход (в направлении стрелок на рис. 102, б) и две частицы вновь разойдутся. Однако если за время жизни объединенной системы произойдет переход с излучением в нижнее устойчивое состояние, то будет иметь место действительная рекомбинация атомов или радикалов либо ионов и электронов с образованиш молекулы или радикала [c.191]

    ПОЗИТРОН, стабильная элементарная частица самая легкая из частиц, обладающих массой покоя и положит, элементарным электрич. зарядом. П.—античастица электрона их массы покоя и спины в точности равны, а электрич. заряды и магн. моменты равны по абс. величине и противоположны по знаку. Принадлежит к лептонам (см. Элементарные частицы). Может возникать в процессах рождения электронно-позитронной пары, при Р-распаде атомных ядер, в результате превращ. элементарных частиц. Время жизни П. в в-ве ограничивается аннигиляцией с электроном. ПОЗИТРОНИЙ, атом, состоящий из позитрона е+ и электрона е . Обозначается Р5. Сходен с атомом водорода, в к-ром протон замещен позитроном. Образуется при торможении своб. позитронов в в-ве в результате присоед. позитроном электрона одного из атомов среды, реже — при распадах ядер или элементарных частиц, обуслопленных электромагн. взаимодействиями (см. Элементарные частицы). Неустойчив, т. к. при взаимод. позитрона с электроном происходит аннигиляция, в результате к-рой П. превращается в 2 или 3 -у-кванта. Среднее время жизни П. до аннигиляции на 2 7-кванта — 1,25-10 с, на 3 у-кванта — [c.453]

    Атом (молекула) может резонансно пстлотить л фотонов с гораздо больщей вероятностью, поднимаясь по лестнице последоват. квантовых уровней (рис. 1,6). Т. наз. много-ступеичатое резонансное возбуждение молекул возможно в многочастотном лазерном излучении, если частоты лазеров настроены точно на частоты последоват. квантовых переходов. Т. к. времена жизни промежут. квантовых состояний конечны (обычно от Ю до 1(> с), то лазерные импульсы могут воздействовать на атом (молекулу) поочередно, еслн длительность импульсов и интервал времени между ними меньше времени жизни соответствующего состояния. Если все лазерные импульсы воздействуют одновременно, наряду с многоступенчатым резонансным возбуждением происходит М. п., при к-ром атом (молекула) поглощает одновременно неск. фотонов и, не задерживаясь ка промежут. уровнях, достигает конечного состояния. Различие между этими процессами проявляется в том, что многоступенчатое возбуждение гораздо более чувствительно к точноетн ре зонанса по частоте с промежут. уровнем по сравнению е М.п. [c.99]

    Различие продуктов, полученных ка микро- и макроэлектродах, нередко обусловлено химическими реакциями, в результате которых первичный продукт электролиза превращается в соединение, способное подсерх аться дальнейшему электролизу. Чаще всего реакция протекает слишком медленно и за время жизни одной капли электрохимически активные частицы ке образуются, однако скорость этой реакции достаточна для образования заметных количеств частиц при макроэлектролизе, продолжающемся в течение нескольких минут или часов. [c.161]

    II полученный светочувствительный состав наносят на подложку центрифугированием, сушат при 60 °С, облучают через диапозитив лампой ДРШ-250, засвечивают и проявляют ксилолом или уайт-спиритом. Диффузию проводят при 1300 °С в течение 4 ч на воздухе в пластины р-81 с удельным объемным электрическим сопротивлением р = 50 Ом см. Полученный р—л-переход имеет вольт-ампер-ную харакгеристику, близкую к теоретической, и время жизни 10 МКС. Поверхностная концентрация 10 —10 атом/см зависит от концентрации ароматического азида и режима диффузии [а. с. СССР 520559]. Подобные же азидсодержащие элементорганические композиции описаны для селективного легирования полупроводниковых пластин мышьяком [а. с. СССР 622035]. Диффузию из фоторезиста в этом случае проводят на воздухе при 1250°С, полученные р—п переходы также имеют время жизни неосновных носителей порядка 8—10 МКС. [c.199]

    J — скорость пополнения популяции В-лимфоцитов в результате дифферент цировки стволовых клеток, х — среднее время жизни В-лимфоцитов. Второй м третий члены правой части уравнения для i описывают соответственно уменьшение числа В-клеток в результате контакта с АГ и его увеличение вследствие формирования клеток памяти, которые считаются идентичными первоначальным В-лимфоцитам. К — коистаита скорости репродукции АГ в организме, члены с Q а R описывают соответствеиио уменьшение количеств АГ и АТ в результате их взаимодействия. Член с Аг описывает производство АТ, S характеризует скорость распада АТ. Параметры Р, А , А,, im, ir могут зависеть от динамики численности регулярных Т-клеток. Для тимус-независимых АТ от этого можно отвлечься, равно как и при быстром достижении стационарного числа Т-клеток. Считаем эти параметры постоянными. [c.581]

    Обозначим через б вероятность разветвления цепи на данном ее звене, — вероятность гибели активного центра, исключающей возможность дальнейшего создания в реакции новога активного центра, и Ат — время между двумя последующими реакциями в цепи, т. е- время жизни одного звена. Тогда число разветвлений f в единицу времени в единице объема за счет одного активного центра (вероятность разветвления цепи в единицу времени) равно [c.132]


Смотреть страницы где упоминается термин Атомы время жизни: [c.275]    [c.163]    [c.169]    [c.139]    [c.141]    [c.51]    [c.628]    [c.5]    [c.2188]    [c.13]    [c.30]    [c.13]    [c.71]    [c.474]    [c.225]    [c.407]   
Физическая химия Книга 2 (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атом жизни

Время жизни



© 2025 chem21.info Реклама на сайте