Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атом жизни

    Поворотным пунктом в развитии теории химии и органической химии, в частности, явился Первый международный конгресс химиков, который проходил Е 1860 году в г. Карлсруэ. С этих пор в химию прочно вошли достаточно строгие определения понятий атом, молекула, эквивалент, атомный и молекулярный вес, валентность. Начала свою жизнь теория валентности, возникновение которой в [c.15]


    Хотя сами по себе эти вещества ядовиты, их атомы могут входить в состав молекул неядовитых соединений. Например, атом хлора, соединяясь с атомом натрия, образует хлористый натрий, или поваренную соль, которая вовсе не ядовита, а наоборот, необходима для жизни. [c.67]

    Именно условность обрыва и объясняет не совсем обычную роль радикала НО2. С точки зрения формальной кинетики реакция 11+ есть реакция третьего порядка, хотя некоторые авторы [72, 76] полагали, что процесс 11+ непростой и его можно представить в виде комбинации двух бимолекулярных стадий H+Oj НО2 и НО -Ь М -> НО2 -И М. Экспериментально показано, однако [108], что время жизни HO.j при Т > 800 К и Р 5 ат должно быть порядка 10 с, т. е. что третий порядок реакции значительно более вероятен чем второй. [c.275]

    Сок жизни. Алма-Ата, Казахстан , 1974, 70 с. с ил. [c.111]

    Распад сложного радикала происходит по связи С—С, находящейся в р-положении по отношению к углеродному атому, несущему свободную валентность, и продолжается до тех пор, пока не возникнет простой радикал (передатчик цепи), который начинает следующий цикл превращений. При достаточно высоких давлениях, однако, средняя длина свободного пробега уменьшается, а среднее время между соседними столкновениями радикала и молекул алкана становится меньше средней продолжительности жизни сложных радикалов и последние могут прореагировать с алканом раньше, чем распадутся, образуя более высокие предельные углеводороды, чем этан. Это предсказание теории находится в согласии с увеличением выхода более тяжелых парафинов [c.25]

    Рассматривая белковый состав человеческого организма (включая волосы, ногти, мышцы, соединительные ткани), мы вправе предположить, что молекулы, составляющие сложный организм, имеют сложную природу. В таком случае необходимо исследовать природу этих молекул жизни . При обработке белка раствором кислоты или основания вместо исходной молекулы белка возникает раствор, содержащий много более простых, гораздо меньших по размеру молекул — аминокислот. Молекула белка — высокомолекулярное соединение, или биополимер, в котором мономерные единицы — аминокислоты. Эти мономерные единицы содержат аминогруппу, карбоксильную группу и атом водорода, присоединенные к одному и тому же атому углерода. Однако в различных аминокислотах образующий четвертую связь с центральным атомом углерода атом (или группа атомов) не- [c.26]


    Наблюдается достаточно строгая зависимость времени жизни атомов от их места в генетических рядах. Рассмотрим это на при мере одного фрагмента из Системы атомов (рис. 12) с атомом азота 7Н в центре. Проанализируем закономерно-сл и изменения срока жизни атомов во всех рядах, на пересечении которых лежит названный атом азота. На рис. 12 возле 128 [c.128]

    Такой переход окажется особенно резким, если, во-первых, будет очень мало число активных центров и) , ежесекундно создаваемых в единице объема не в ходе продолжения цепей, а тепловым движением из исходных веш,еств, и если, во-вторых, будет мало время развития одного звена цепи Ат (или, что то же самое, время жизни активного центра). Первое — малая величина гоа — приводит к тому, что скорость стационарной разветвленной реакции (р —8>0) может быть неизмеримо малой, так как каждая цепь имеет конечную длину, а число цепей в силу малости Юд очень невелико. Второе же — малая величина Ат — скажется, когда в результате изменения одного из перечисленных выше параметров системы, например, давления, будет достигнуто равенство менаду вероятностями обрыва и разветвления. В этот момент реакция теряет стационарный характер а так как Ат очень мало, то даже при малом значении реакция быстро достигнет больших значений скорости. Если разность вероятностей обрыва и разветвления, как функция давления, дважды приобретает нулевое значение, то и дважды будет осуществляться такой переход. [c.54]

    Фонтанным способом скважины эксплуатируются в начальный период их жизни, когда жидкость из скважины выталкивается давлением газов. Во избежание открытого фонтанирования, ведущего к большим потерям нефти и газа и могущего вызвать порчу самой скважины или пожар, устье фонтанной скважины предварительно оборудуется специальной стальной арматурой, способной выдержать высокое (от 75 до 250 ат) давление газов в пласте. [c.21]

    Каждая молекула, содержащая атом водорода, имеет характерную для этого атома линию поглощения в спектре ЯМР- Если в растворе находятся молекулы АН и ВН, не обменивающиеся протонами, то в ЯМР-спектре раствора есть две полосы поглощения, обусловленные поглощением энергии протонами молекул АН и ВН. Обмен протонами между АН и ВН меняет спектр. Если [АН] — [ВН1, то время жизни Ан > вн, Тан = кл d in [AHl/d/. [c.348]

    Очевидно, чем больше времени атом проводит в -м состоянии, тем уже уровень энергии данного состояния. Времена жизни возбужденных электронных состояний атома, как правило, равны десяткам наносекунд, поэтому ширины уровней этих состояний соответствуют значениям порядка см . [c.12]

    Если возбужденный атом взаимодействует с другими частицами, например, сталкивается с ними, то столкновения могут уменьшить время его жизни в возбужденном состоянии, согласно соотношению неопределенности это приведет к уширению такого энергетического уровня и спектральная линия, обусловленная переходом атома на данный уровень (или с данного уровня),станет шире. (Это так называемое ударное уширение.) [c.12]

    Периоды полураспада изотопов Na и 0 относятся между собой, как 1 2. Указать для этих изотопов отношение а) их констант радиоактивного распада б) продолжительностей жизни в) активностей в кюри/г-атом г) удельных активностей в кюри/г. [c.44]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Жидкостный мембранный электрод этой конструкции обладает всеми преимуществами электродов с твердыми мембранами и, кроме того, способен выдержать давление более 0,1 МПа (1 ат) без механического разрушения мембраны или вытеснения из нее органической жидкости. Для такого типа электродов равновесное значение потенциала устанавливается быстро смещение его во времени невелико, и он хорошо воспроизводится. Электроды имеют длительный срок жизни при периодической перезарядке жидким ионитом. [c.537]


    Бензофенон — нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет — триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и образуют кетильный радикал (Я = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет — триплетное поглощение нафталина Х = А 2 нм). Используя величину е для кетильных радикалов (3220 л моль см ), можно по уменьшению оптической плотности на длине волны 545 нм и по оптической плотности триплет — триплетного поглощения нафталина определить коэффициент экстинкции для нафталина  [c.192]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (IX. 15), то ширина линии была бесконечно малой. Однако энергия уровня не есть точно зафиксированная величина. Неопределенность в энергии уровня б связана со временем жизни частицы Дт на соответствующем уровне соотношением неопределенностей б Ат й, где Дт определяется величинами Г] и Т . Ширина линии определяется величиной ЬЕ (рис. 80), и она тем больше, чем меньше Дт. Таким образом, малые времена жизни возбужденного состояния приводят к уширению спектра. С другой стороны, очень большие времена жизни также вызывают уширение спектра вследствие насыщения. [c.235]

    Вторичные реакции являются обычными термическими реакциями фотохимические они лишь в том смысле, что вступающие в реакцию частицы не появились бы в отсутствие света. Некоторые частицы встречаются гораздо чаще как промежуточные в фотохимических реакциях, нежели в термических. Сюда относятся свободные атомы и радикалы, а также электронно-возбужденные частицы. Такие промежуточные частицы обычно высокоактивны, и их время жизни в реакционной системе соответственно мало. Однако активность не следует путать с нестабильностью свободный радикал или атом в изолированном состоянии имели бы совершенно нормальную стабильность, тогда как время жизни электронно-возбужденной частицы определяется вероятностью потери энергии путем излучения. Образующиеся атомы и радикалы могут также иметь некоторый избыток энергии например, при фотолизе кетена метилен может выделяться как в основном, так и в возбужденном электронном состоянии в зависимости от длины волны поглощаемого излучения. [c.18]

    Несколько экспериментов дало прямые доказательства, что скрытое изображение представляет собой металлическое серебро в галогенидных зернах, но во много раз меньших концентрациях, чем в отпечатанном виде. С помощью методики, способной регистрировать изменения оптической плотности порядка 10 , можно обнаружить оптическое поглощение за счет появления серебра в областях скрытого изображения даже на пороге предельно малых экспозиций. Существует также заметное сходство влияния окружающих факторов (например, электрических полей или кристаллических дефектов см. ниже) на локализацию отпечатавшихся серебряных частиц и центров проявления. Поэтому наше обсуждение первичных фотохимических процессов будет касаться преимущественно образования серебра в результате экспонирования и последующего проявления. При этом предполагается, что процессы образования скрытого изображения фотохимически идентичны упомянутым процессам, но дают во много раз меньшее количество металлического серебра. Однако есть и различия. Важным свойством процесса образования скрытого изображения является падение чувствительности эмульсии при очень низких интенсивностях света (нарушение закона обратной пропорциональности чувствительности и экспозиции), которое свидетельствует о существовании многоквантового процесса. Доказано, что обычно одиночный атом серебра в галогенидной решетке нестабилен, его время жизни составляет лишь несколько секунд. Для получения стабильной системы требуются по крайней мере два атома, если только нет заранее введенного стабилизирующего центра. [c.246]

    Если стимулирующего падения на более глубокую орбиту кванта света на изучаемый атом не попадает, переход с возбужденной на нормальную орбиталь становится мало вероятным и в среднем электрон проводит некоторый период жизни на возбужденной орбите, пока какие-то неизвестные до сих пор побудительные факторы (может быть, не изученные еще факторы, гипотетически возмущающее взаимодействие электрона с материальным вакуумом или какое-нибудь внутреннее событие в недрах самого электрона) не побудят электрон перейти спонтанно (т. е. по своей воле ) на нормальную орбиту. [c.158]

    Из этого рисунка видно, что ширина линии определяется величиной ДЕ и тем больше, чем больше последняя и, следовательно, чем меньше Ат. Таким образом, малые времена жизни возбужденного состояния приводят к уширению спектра. С другой стороны, очень большие времена жизни, как указывалось выше, также вызывают уширение спектра вследствие насыщения. [c.97]

    Согласно принципу неопределенности Ат-А л й время жизни в данном энергетическом состоянии влияет на определенность значения энергии в этом состоянии. Сле- [c.117]

    Бензофенон-нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет-триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и дают кетильный радикал (Х = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет-триплетное поглощение нафталина ( =412 нм). Используя известную величину е для ке- [c.318]

    Если у одного радиоактивного элемента ежесекундно распадается 1 атом из 10, а у другого — 1 атом из 1000, то чему равна средняя продолжительность их жизни Какой из них и во сколько раз долговечнее Ответ 10 и 10  [c.111]

    Значения, приведенные в этих таблицах, по существу указывают продолжительность жизни атомов X в соответствующих системах. Некоторые соображения о важности влияния стенок могут быть нолучены нрн сравнении времен жизни некоторого атома со средними значениями времени, необходимого ДЛЯ того, чтобы данный атом продиффундировал к стенкам. В фотохимических системах время диффузии (пренебрегая конвекцией) обычно равно —1 сек. Из табл. XIII.3 ясно, что если обрывом на стенках можно пренебречь, то фотолиз должен происходить нри высоких интенсивностях света (превышающих 10 квантIсм сек), при высоком суммарном давлении (достигаемом, например, при добавлении инертного газа) и в больших сосудах. Это не всегда возможно, особенно в системах, в которых длины цепей велики. [c.298]

    Для продолжительности жизни катализатора и для режима процесса важно, чтобы в реакторо процесс осущестилялся ь паровой фазе. Это ограничивает пределы температуры пыше 200° и давления ниже 70 ат. [c.494]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    Атомы в комплексе соверщают колебания по различным направлениям, но, как сказано, существенны колебания вдоль линии валентных связей (это направление колебаний называют координатой реакции). Можно рассмотреть относительное смещение атомов, представив, что первый и третий атом неподвижны, а второй приближается то к первому, то к третьему. В конце одного колебания при сближении атомов Вг и Н комплекс распадается. Время жизни комплекса обратно пропорционально частоте колебаний V. В течение этого времени комплекс находится в квазистационарном равновесии с исходными частицами. Рассмотрим такое равновесие в общем виде А + В 5 Х+, где А и В — исходные частицы Х+ — активированный комплекс. [c.239]

    Обозначим через б вероятность разветвления цепи, а через Р — вероятность ее обрыва. Если время жизни звена цепи (т. е. время между двумя последовательными звеньями цепи) равно At, то число разветвлений / = б / Ат, а число обрывов g = Р /Дт. E j H далее в единицу времени в единице объема возникает п активных центров, то fn — число разветвлений, а gn — число обрывов цепей в единицу времени в единице объема. Обозначим через По число активных центров, возникающих в результате реакций зарождения цепи. Тогда [c.273]

    Согласно квантовой механике излучение (поглощение) происходит только при переходе из одного стационарного состояния в другое. При этом изменяется распределение электронной плотности, что с классической точки зрения отвечает появлению дипольного момента в акте перехода. Анализ показывает, что атомная (молекулярная) система под влиянием возмущения, изменяющегося во времени, например под влиянием периодически изменяющегося электромагнитного поля (света), может совершать переходы из одного стационарного состояния в другое, пог.нощая при этом квант энергии г = км = = Е"—Е . Время перехода ничтожно коротко. Время жизни в возбужденном состоянии около 10 с (за исключением особых случаев). Возвращаясь в основное состояние, атом (молекула) изучает квант с энергией е = /IV, и в спектре испускания наблюдается линия с частотой [c.35]

    Водород состоит из смеси изотопов с массовыми числами 1 и. 2 ( Н и Н). Соотношение между ними в отдельных природных объектах несколько колеблется, но более или менее близко к 6700 1, т. е. один атом (дейтерия) приходится примерно на 6700 атомов Н (протия). В ничтожных количествах — порядка одного атомя на 10 атомов Н —к ним примешан радиоактивный изотоп водорода (тритий), средняя продолжительность жизни атомов которого составляет 18 лет. Благодаря резкому количественному преобладанию протия над двумя другими изотопами природный водород может в первом приближении считаться состоящим из атомов Н. [c.118]

    Атом любого элемента следует рассматривать как систему, способную возбуждаться и переходить в новое состояние, определяемое квантом поглощенной энергии. Это состояние атома создает новое расположение электронов, переход которых на следующий подуровень или уровень означает поглощение энергии, а возвращение в исходное состояние — релаксация — сопровождается выделением энергии. Время Жизни возбужденного атома чрезвычайно мало (10 — 10 с), однако если атом, находясь в возбужденном состоянии, образует новые связи (вступает в химическое соединение), то в таком случае это состояние атома может сохраняться неопре- [c.53]

    При энергетическом возбуждении атома в электрической дуге, в искре, в пламени его электронная энергия возрастает и он переходит из основного (невозбужденного) состояния в другие (возбужденные) состояния. Время жизни возбужденного состояния невелико ( 10 с). Атом, теряя энергию возбуждения в виде излучения (эмиссии), возвращается либо в исходное основное состояние (резонансное излучение), либо в какое-то другое состояние, лежащее по энергии выше основного состояния. Каждой такой потере энергии возбуждения атома соответствует линия (резонансная или нерезонансная) в спектре его излучения при определенной длине волны. Так как возбужденных состояний у атома может быть очень много, то в спектрах исхтускания атомов может наблюдаться много линий (до нескольких сотен и даже тысяч). Каждый атом имеет [c.518]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (1.15), ширина линии была бы бесконечно малой. Однако энергия уровня не фиксирована точно. Неопределенность в энергии уровня бЕ связана со временем жизни частицы Ат на соответствующем уровне соотношением неопределенностей бЕАх а, где Ат определяется величинами и 7г. Как видно из рис. 1.3, ширина спектральной линии определяется величиной б , и она тем больше, чем меньше Ат. Таким. образом, малое время жизни возбужденного состояния приводит к уширению спектра. С другой стороны, очень большое время жизни вызывает уширение спектра вследствие насыщения. [c.21]

    Организмы животных и растений содерл ат от 50 до 90% воды. В организме человека она составляет около 65% от массы тела. Большая часть воды в организме находится внутри клеток (70%), около 23% составляет межклеточная вода, а остальная (7%) находится внутри кровеносных сосудов и в составе плазмы крови. Потеря организмом человека более 10% воды может привести к смерти. При продолжительности жизни 70 лет челсвек потребляет около 25 т воды. [c.678]


Смотреть страницы где упоминается термин Атом жизни: [c.3]    [c.311]    [c.302]    [c.523]    [c.340]    [c.299]    [c.275]    [c.163]    [c.16]    [c.169]    [c.139]    [c.141]    [c.79]    [c.360]    [c.51]   
Основы общей химии том №1 (1965) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбированные атомы время жизни

Атомы время жизни

Время жизни адсорбированных атомов зависимость от энергии десорбции

Время жизни атомов иода

Время жизни возбужденных атомов

Время жизни электронно возбужденных атомов

Время жизни электроно возбужденных атомов

Соли серной кислоты. Сульфат натрия История открытия. Глауберова соль в природе. Свойства сульфата натрия. Применение сульфата натрия. Жизнь Лаксмана. Гипс как серное удобрение. Кислоты с неравноценными атомами серы. Тиосерная кислота и гипосульфит. Аналитическая химия производных электроположительной серы

Среднее время жизни некоторых электронновозбужденных атомов

Средняя продолжительность жизни радиоактивных атомов



© 2025 chem21.info Реклама на сайте