Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильные соединения кислорода

    А что если обе связи атома кислорода присоединяются к одному и тому же атому углерода. Тогда получится такое сочетание С = О Это сочетание называется карбонильной группой, а содержащие его вещества — карбонильными соединениями. [c.118]

    При таком окислении об окисляемости топлив судят по времени расходования 50% кислорода, по времени достижения максимальной концентрации образующихся продуктов окисления (например, гидропероксидов) и по численному значению этой концентрации. Результаты окисления топлива Т-6 при 150°С, имевшего исходную концентрацию растворенного кислорода примерно 1,8 ммоль/л, показывают, что пероксиды, спирты и карбонильные соединения являются промежуточными продуктами окисления [54]. Их концентрации в ходе испытания проходят через максимумы, смещенные по времени друг относительно друга. Первым достигают максимума соединения, имеющие функциональную группу ООН, затем соединения с ОН и СО и, [c.50]


    Реакции полимеризации, инициированные пероксидами, могут продолжаться и без участия кислорода. Протекающий параллельно распад гидропероксидов приводит к образованию карбонильных соединений, которые могут конденсироваться с неизменившимися гидропероксидами и образовывать спирты, кислоты и гидроксикислоты. [c.54]

    Давление, при котором протекает реакция, как было показано на примере индивидуальных углеводородов, влияет на характер продуктов окисления. Основными переменными являются парциальные давления углеводорода и кислорода, если вместо кислорода применяется воздух, в этом случае азот просто служит разбавителем. Высокие давления в большей мере способствуют образованию спиртов, чем карбонильных соединений, а также благоприятно влияют на углеродный скелет углеводородной молекулы. [c.343]

    В табл. П-4 приведено сравнение продуктов окисления циркулирующим кислородом некоторых типов углеводородов при 110° С. Величины выражены в процентах от общего количества поглощенного кислорода. Парафины и нафтены дают наибольший выход кислот, карбонильных соединений и двуокиси углерода. Парафины дают наибольший выход воды, нафтены — наибольший выход перекисей. За исключением перекисей (вызывающих коррозию металлов [111]), связи между какими-либо из этих продуктов и материальным исполнением двигателя не установлено. [c.82]

    Измерение кинетики образования других промежуточных соединений — спиртов, карбонильных соединений, кислот — позволяет характеризовать динамику их поведения в ходе окисления топлива растворенным кислородом. Метод позволяет сравнивать топлива по окисляемости и выявить специфику окисления топлив растворенным кислородом. [c.72]

    В опытах 1 и 2 резина подвергалась воздействию углеводородов, в опытах 3 и 4 — углеводородов, содержащих стабильные продукты окисления кислоты, спирты, карбонильные соединения в опыте 5 в топливе протекали окислительные процессы, в опыте 6 резину окисляли кислородом воздуха. Сопоставляя [c.230]

    В условиях хранения окисление топлива происходит в жидкой фазе под действием кислорода воздуха. При этом содержащиеся в топливах парафиновые и нафтеновые углеводороды почти не подвергаются действию кислорода — главная роль в снижен 1и стабильности топлив принадлежит органическим соединениям, содержащим кислород, серу (полисульфиды и ароматические тиолы) и азот, и ненасыщенным углеводородам. Кислород активно взаимодействует с алкилароматическими углеводородами, имеющими ненасыщенные боковые цепи. Основными продуктами этого взаимодействия являются спирты, карбонильные соединения и другие вещества, которые в дальнейшем образуют смолы причем оксикислоты и смолы кислотного характера ускоряют дальнейшее окисление, а нейтральные смолы его тормозят. [c.253]


    При гидрировании двойной связи между углеродом и кислородом в карбонильных соединениях тепловой эффект ниже, чем для двойной углерод-углеродной связи. [c.11]

    Гидрирование а-окисей олефинов в спирты проходит через промежуточное образование карбонильных соединений — альдегидов или кетонов. Углеводороды образуются не в результате последовательной реакции гидрирования спиртов, а вследствие элиминирования кислорода оксиранового кольца с образованием олефинов, которые затем гидрируются до парафинов по схеме  [c.39]

    Методом тонкослойной хроматографии установлено, что кислые компоненты асфальтенов содержат пиррольные фрагменты, а основные— пиридиновые и ариламиновые [256]. В смолисто-асфальтеновых соединениях кислород (1—5%) преимущественно входит в состав функциональных групп карбоксильной, фенольной, спиртовой, сложноэфирной и карбонильной (табл. 96) [249, 257, 258, 259]. [c.273]

    Было рассчитано, что в реально существующем карбонильном соединений действительное смещение электронов легко /поляризуемой п-связи в сторону атома кислорода составляет 22% от предельно возможного смещения, при котором на ато-N4 углерода был бы полный положительный заряд. [c.184]

    Другой характерной особенностью карбонильных соединений является высокая реакционная способность а-водородных атомов, которые шод действием щелочных агентов могут отщепляться в виде протонов. Это обусловлено тем, что наиболее электроотрицательный атом кислорода карбонильной группы вызывает не только появление большого дефицита электронной плотности на непосредственно связанном с ним атоме углерода, но и передаваемый по индукции общий сдвиг электронов остальных связей и в первую очередь ближайших связей С—Н, находящихся в а-положении к карбонильной группе. [c.184]

    При проведении реакции карбонильное соединение постепенно вводят к заранее приготовленному реактиву Гриньяра, и, следовательно, в реакционной массе всегда имеется избыток последнего, поэтому есть основания предполагать, что на первой стадии реакции взаимодействует димер реактива Гриньяра (см. разд. 4.2). С одной стороны, с атомом углерода карбонильной группы реагирует как нуклеофил один из радикалов К, а с другой — по атому кислорода этой же карбонильной группы, на котором сосредоточена избыточная электронная плотность, координируется атом магния, имеющий дефицит электронной плотности. Это приводит к дополнительному увеличению положительного заряда иа атакуемом атоме углерода карбонильной группы. [c.278]

    Нитрозогруппа является аналогом карбонильной группы. Так как электроотрицательность азота меньше, чем электроотрицательность кислорода, а кратная связь легче поляризуется, чем ординарная, то на атоме азота в нитрозогруппе имеется значительный дефицит электронной плотности, хотя и меньший, чем на атоме углерода в карбонильной группе. Поэтому нитрозобензол (подобно карбонильным соединениям) способен взаимодействовать с реактивами Гриньяра, например  [c.412]

    Механизм взаимодействия реактивов Гриньяра с карбонильными соединениями. Обычно взаимодействие магнийорганических соединений изображается как двухстадийный процесс. Первая стадия заключается в координации атома магния с атомом кислорода карбо- [c.214]

    К карбонильным соединениям принадлежат альдегиды, кетоны, карбоновые кислоты и их эфиры, хлораигидриды, амиды и др. Все эти соединения содержат атом кислорода, связанный с агомом углерода кратной связью. В таких группах возможны три типа переходов п->-л., пл и [c.207]

    Недостатком окислительного дегидрирования с акцептированием водорода кислородом является необходимость соблюдения особых мер безопасности во избежание взрыва углеводородов и образования в процессе реакции кислородсодержащих соединений. Даже в оптимальных условиях окислительное дегидрирование н-бутиленов сопровождается побочными реакциями в небольших количествах образуются фуран, ацетиленовые и карбонильные соединения, ацетальдегид, акролеин, метакролеин, формальдегид и окислы углерода. [c.186]

    Вклад парамагнитного члена в величину а приблизительно обратно пропорционален средней энергии возбуждения электронов 8. Поэтому сигнал ЯМР ненасыщенных соединений появляется при меньшем значении Н, чем сигнал ЯМР насыщенных соединений. Например, у молекулы ацетона с небольшой энергией п я-перехода кислорода карбонильной группы сигнал О (изотоп кислорода с нечетным ядром, имеющим не равный нулю спин) сдвинут влево по сравнению с положением сигнала других соединений кислорода. [c.123]

    Альдегиды и кетоны относятся к карбонильным соединениям. Карбонильная группа С=0 характеризуется высокой реакционной способностью, что объясняется ее строением. Атом углерода р -гибридизован с кислородом он связан одной а- и одной я-связями, как в этилене. Но в отличие от этиленовой двойной связи в карбониле [c.338]


    К карбонильным соединениям могут присоединяться различные нуклеофильные реагенты, например содержащие кислород, серу, азот, углерод. К кислородсодержащим нуклеофилам относятся прежде всего вода и спирты. [c.157]

    Карбонильные соединения относятся к числу наиболее реакционноспособных классов органических соединений. Их химические свойства связаны с особенностями электронного строения карбонильной группы. Связь между углеродом и кислородом поляризована кислород, как более электроотрицательный элемент, накапливает вокруг себя большую электронную плотность, углерод оказывается положительным концом диполя. С подобной поляризацией мы встречались у гидроксильных производных, но поляри- [c.172]

    Кислород. В нефтяных остатках кислород в основном концентрируется в смолисто-асфальтеновых компонентах. Содержание его в остатках различных нефтей находится в пределах 0,1-0,6% и входит он в состав ароматических и гетероциклических кетонов (типа хинона и флуоре-на), а также в карбоновых кислотах и кольцах фурана [22]. Установлено, что в смолисто-асфальтеновых соединениях кислород преимущественно входит в состав функциональных групп (карбонильной, карбоксильной, гидроксильной и сложноэфирной). Эти группы в основном определяют поверхностную активность смол и асфальтенов. В асфальтенах, вьщелен-ных из гудронов, большая часть кислорода входит в состав гидроксильных и карбонильных групп (около 80%). По относительному содержанию гетероатомов в смолах и асфальтенах наблюдается следующая закономерность в асфальтенах содержание серы выше, чем кислорода, а кислорода аыше, чем азота в смолах содержится кислорр а больше, чем серы, а серы больше чем азота [22]. [c.18]

    При взаимодействии н-бутенов с катализатором (507о активной массы на силиказоле) в условиях отсутствия газообразного кислорода в реакционной смеси реакция окислительного дегидрирования протекает с высокими выходом бутадиена и избирательностью. Выходы бутадиена превышают 75% при избирательности около 90%. Выходы карбонильных соединений, фурана и кислот при этом в 3—4 раза меньше, чем в присутствии кислорода в газовой фазе. [c.685]

    В отличие от стирола а-метилстирол не склонен к самопроиз- / вольной полимеризации даже при 160—170 °С, однако он чрезвычайно легко окисляется кислородом воздуха в процессе хранения и даже ректификации (вследствие подсосов в систему) и сополи-меризуется со стиролом и винилтолуолами, всегда содержащимися в дегидрогенизате. Поэтому применяемые ингибиторы должны одновременно подавлять полимеризацию и автоокисление. По аналогии с производством стирола в промышленности длительное время применялись лишь такие ингибиторы, как сера и гидрохинон, - совершенно не предотвращающие превращение а-метилстирола в перекисные и карбонильные соединения, концентрация которых в готовом продукте нередко достигала 0,5—1%. Это сводило на нет все усилия по получению мономера высокой степени чистоты (99,5—99,8% основного вещества) за счет улучшения отделения А легкокипящих (стирол, пропилбензолы) и высококипящих (бутил- И бензолы, р-метилстирол) углеводородов. Наличие ацетофенона и У перекисей особенно нежелательно при анионной сополимеризации а-метилстирола, так как указанные соединения разрушают катализаторы. [c.737]

    Кинетика поглощения кислорода и образования продуктов окисления для топлива Т-6 при 130°С показана на рис. 4.6. Растворенный кислород окисляет топливо с образованием спиртов, карбонильных соединений и кислот. Характер кинетических кривых продуктов окисления указывает па то, что гидроперок-сиды, спирты и карбонильные соединения являются промежуточными соединениями. Концентрация каждого продукта в ходе опыта проходит через максимум, но максимумы смещены относительно друг друга во времени. Раньше всего максимум достигается на кинетической кривой накопления гидропероксидов [164]. Кислоты являются конечным продуктом, хотя в ряде случаев [119] кривая накопления кислот также имеет максимум, что можно объяснить их участием в образовании смолистых соединений и сложных эфиров. [c.86]

Таблица 4 7. Кинетика образования гидроперокеида, спиртов, карбонильных соединений и кислот при окислении топлив растворенным кислородом з замкнутом объеме Таблица 4 7. <a href="/info/24721">Кинетика образования</a> гидроперокеида, спиртов, <a href="/info/1049">карбонильных соединений</a> и кислот при окислении топлив <a href="/info/641946">растворенным кислородом</a> з замкнутом объеме
    При импульсном фотолизе бензофенона образуется триплетное состояние бензофенона. В зависимости от заместителей и растворителя нижнее триплетное состояние может иметь п, л -характер с электрофильпым кислородом или л, я -характер со значительным переносом заряда. Для п, я -триплетного состояния карбонильных соединений наблюдается высокий квантовый выход Ф отрыва атома водорода от спиртов, углеводородов, давая в качестве промежу- [c.175]

    Рассмотренная вьш1е реакция - кето-енольная изомерия. Вследствие полярности связи 0 -Н протон легко отрьшается от кислорода и образуется анион, заряд которого может делокализоваться одновременно с делокализацией двойной связи. Будучи очень реакционноспособным, делокализованный анион присоединяет протон, но уже не по кислороду, а по атому >тлерода. При этом образуется изомф - карбонильное соединение, причем процесс является обратимым. [c.125]

    Кинетика реакции в эквимолекулярной смеси изучалась в трех точках 1) при Рнач = " 00 мм рт. ст. и г = 230° С (Ешжнетемпературное окисление), 2) при Р ач = 160 мм рт. ст. и 7 = 275° С (холоднопламер -ное окисление) и 3) при Рцач= ЮО мм рт. ст. и 7" = 450° С (верхнетемпературное окисление). Во всех трех случаях производилась регистрация изменения давления и расхода кислорода и анализ продуктов, образующихся по ходу реакции. Анализировались следующие соединения формальдегид, высшие альдегиды, кетоны, сумма всех карбонильных соединений, перекиси, олефины, парафиновые углеводороды, СО и С0.2. Так как в основном анализ носил групповой характер и, кроме того, не анализировался расход метилциклонентана, то баланс подсчитывался только по расходу кислорода. Обычно в продуктах реакции обнаруживалось 85—90% израсходованного кислорода. Во всех трех темиературных областях были констатированы одинаковые продукты за тем исключением, [c.420]

    В отличие от сопряженных диенов сопряженные а,(5-ненасы-щенные карбонильные соединения имеют большие дипг)льные моменты, причем избыточная электронная плотность сосредоточивается на атоме кислорода. Поскольку я-электроны двойной связи С = С в а,р-ненасыщенных карбонильных соединениях смещаются в сторону карбонильной группы, дипольный момент этих соединений больше, чем у соответствующих насыщенных карбонильных соединений  [c.81]

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильном соединении имеется значительный дефицит электронной плотности, обусловленный различием в электроотрицательности атомов углерода и кислорода и поляри.чуемостью кратной связи, реактив Гриньяра легко атакует его как нуклеофил, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом и последующем гидролизе образуются первичные спирты, с остальными альдегидами — вторичные, а с кетонами — третичные спирты  [c.277]

    Замещение карбонильного кислорода хлором. Замещение кислорода карбонильной группы на хлор при действии на карбонильное соединение P I5 приводит к образованию геминального дигало-генопронзводного  [c.132]

    Широко изучаются также соединения, в которых в качестве лиганда выступает молекула кислорода О2. Такие соединения по аналогии с нитрогениальными и карбонильными соединениями можно [c.463]

    Первой стадией реакции реактива Гриньяра с карбонильными соединениями является координация атома магния с атомом кислорода карбонильной группы с образованием промежуточного комплекса. Затем происходит миграция алкильной группы в виде аниона или радикала. При этом возможен как гетеролитический, [c.219]

    Для понимания химического поведения карбонильных соединений следует рассмотреть электроннуй структуру карбонильной группы. Атом углерода, образуя с кислородом а- и л-связи, находится в 5р -гибридном состоянии. Это обусловливает плоское тригональное построение с валентным углом в 120°. Карбонильная группа сильно поляризована в направлении от углерода к кислороду, и ее электрический момент диполя равен 1,066-10- Кл-м  [c.154]

    Гибридизация. Поскольку энергия s-орбитали ниже энергии р-орбитали, то чем больший s-характер будут иметь гибридная орбиталь, тем ниже будет ее энергия. Отсюда следует, что карбанион при sp-углеродном атоме должен быть более устойчив, чем карбанион при хр -углероде. Так, НС=С , неподеленная пара в котором имеет больший s-характер, чем в СНг=СН- или СН3СН2 (гибридизация sp, sp и sp соответственно), — намного более слабое основание, чем другие два аниона. Этим объясняется относительно высокая кислотность ацетиленов и H N. Другим примером служат спирты и простые эфиры, где неподеленная электронная пара кислорода имеет sp -гибридизацию они являются более сильными основаниями, чем карбонильные соединения, в которых неподеленная пара имеет гибридизацию sp (табл. 8.1). [c.346]

    Илид фосфора также может содержать двойные или тройные связи и некоторые функциональные группы. Простые илиды (Р,Р = водород или алкил) высоко реакционноспособны и взаимодействуют с кислородом, водой, галогеноводородными кислотами и спиртами, а также с карбонильными соединениями и сложными эфирами, поэтому реакцию следует вести в отсутствие таких веществ. Если в а-положении илида содержится электроноакцепторная группа, например OR, N, OOR, СНО, то такие соединения оказываются значительно более стабильными. Устойчивость возрастает из-за делокализации заряда на атоме углерода вследствие резонанса  [c.399]

    Альдегиды и кетоны относятся к карбонильным соединениям. Карбонильная группа С = О характеризуется высокой реакционной способностью, что объясняется ее строением. Атом углерода. у/)--гибридизрван с кислородом он связан одной [c.379]


Смотреть страницы где упоминается термин Карбонильные соединения кислорода: [c.113]    [c.237]    [c.688]    [c.160]    [c.196]    [c.191]    [c.221]    [c.59]    [c.119]    [c.206]    [c.110]    [c.173]   
Изотопы в органической химии (1961) -- [ c.316 , c.317 , c.328 , c.329 , c.334 , c.472 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Соединения кислорода



© 2024 chem21.info Реклама на сайте