Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители скорость реакций нуклеофильного замещения

    Совершенно иначе влияет полярность растворителя на скорость реакции нуклеофильного замещения в случае о-нитрохлорбензола. В неполярной среде реакция этого соединения с пиперидином идет значительно быстрее, чем пара-изомера, и несколько замедляется с увеличением полярности. Так, отношение констант скоростей к 1кп реакции нитрохлорбензолов с пиперидином при 170 °С в бензоле 64, в метаноле 2,8 и в диметилформамиде 1,3. Большее активирующее действие заместителя в орто-положении объясняют образованием внутримолекулярной водородной связи в а-комплексе. [c.163]


    Из-за большого объема переходного состояния и рассредоточенности в нем заряда взаимодействие с протонными растворителями с образованием сильных водородных связей происходит в значительно меньшей степени, чем взаимодействие меньших по размеру анионов с этими растворителями. Вследствие этого бимолекулярные реакции анионов, протекающие через промежуточное образование большого поляризуемого активированного комплекса, содержащего этот анион, осуществляется в апротонных полярных растворителях гораздо быстрее, чем в протонных [12]. Некоторые примеры влияния водородных связей на скорость реакций нуклеофильного замещения в протонных растворителях приведены в табл. 2. При этом надо подчеркнуть следующее. [c.13]

Таблица 5.4. Предсказываемое правилами Хьюза— Ингольда влияние растворителей на скорости реакций нуклеофильного замещения [16, 44—46] Таблица 5.4. Предсказываемое правилами Хьюза— Ингольда <a href="/info/132078">влияние растворителей</a> на <a href="/info/467931">скорости реакций нуклеофильного</a> замещения [16, 44—46]
    Впервые чисто качественную теорию влияния растворителя на скорость реакции нуклеофильного замещения предложили К. Ингольд и Э. Хьюз на основе простой модели сольватации при учете только электростатического взаимодействия между ионами и молекулами растворителя в исходном и переходном состоянии. [c.112]

    Предсказанное влияние полярного растворителя на скорость реакций нуклеофильного замещения [36, стр. 609] [c.63]

    Если реакционный центр остается постоянным, то влияния субстрата и растворителя устраняются в пределах реакционной серии и константа скорости реакции нуклеофильного замещения пропорциональна константе кислотно-основной диссоциации нуклеофила [196]. Если ввести статистическую поправку на различное число водородных атомов в первичных, вторичных и третичных аминах [197], можно рассматривать их совместно. [c.215]

    Скорость реакций нуклеофильного замещения в ароматическом ряду, как правило, сильно увеличивается при переходе от протонных к апротонным растворителям [44, 1973, т. 95, с, 408]. Так, в реакции [c.405]

    Механизмы реакций нуклеофильного замещения были предметом обширных исследований и обсуждаются в ряде книг [159,251, 252]. Лимитирующая стадия в реакциях замещения в алифатическом ряду может быть моно- или бимолекулярной (5м1 или 5 2). Нуклеофильное замещение в ароматическом ряду, как правило, протекает по двухступенчатому бимолекулярному механизму, причем лимитирующей стадией может быть образование или распад промежуточного соединения. И в случае алифатических, и в случае ароматических соединений часто образуются заряженные комплексы. Во многих случаях изменения величины и распределения зарядов между исходным и переходным состояниями коррелируют с влиянием среды на скорость нуклеофильного замещения в ароматическом и алифатическом рядах [159]. Различные изменения зарядов, теоретически возможные в реакциях нуклеофильного замещения, могут быть причиной влияния мицелл на скорость этих реакций. По имеющимся данным, мицеллы влияют на скорости реакций нуклеофильного замещения в алифатическом ряду только в тех случаях, когда хотя бы один из реагентов заряжен. Однако вполне возможно, что будут обнаружены мицеллярные эффекты в реакциях нуклеофильного замещения между нейтральными молекулами в тех случаях, когда распределение реагентов между мицеллами и объемом растворителя, а также их реакционная способность в этих двух фазах сильно различаются. [c.316]


Таблица 3. Влияние полярности растворителя на скорость реакций нуклеофильного замещения Таблица 3. <a href="/info/313409">Влияние полярности растворителя</a> на <a href="/info/467931">скорость реакций нуклеофильного</a> замещения
    С целью достижения гомогенности реакционной системы мы применяли растворитель, обладающий нуклеофильными и одновременно электро-фильными свойствами, — смесь этилового спирта и ацетона. Учитывая, что скорость реакции нуклеофильного замещения часто зависит от природы растворителя, важно было установить, как изменяется константа скорости реакции Меншуткина при использовании в качестве растворителей этилового спирта и спирто-ацетоновой смеси. Модельными соединениями служили пиридины и хлористый бензил. Из табл. 1 и рис. 1 следует, что константы скоростей реакции взаимодействия указанных соединений в рассматриваемых растворителях близки и составляют 18.7.10" и 22.8-10 л/моль-мин. для этанола и смеси этанола и ацетона (2 1) соответственно. [c.22]

    Чрезмерное увеличение скорости реакций нуклеофильного замещения в диполярных апротонных растворителях, которое даже с такими слабыми нуклеофилами, как ион Р", позволяет достигнуть значительных скоростей замещения, в общем объясняется двумя причинами, [c.77]

    Однако, влияние растворителя на скорость реакции нуклеофильного замещения сложных эфиров и особенно совместное влияние факторов строения, среды и температуры на эти процессы мало изучены. Для выяснения и количественного описания этих закономерностей желательно отыскать такую реакцион- [c.177]

    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]

    Одна из трудностей, возникающих иногда при проведении реакций нуклеофильного замещения, заключается в том, что реагенты не смешиваются. Для осуществления реакции реагирующие молекулы должны столкнуться. В реакциях нуклеофильного замещения субстрат обычно нерастворим в воде и других полярных растворителях, тогда как нуклеофил чаще всего представляет собой анион, который растворим в воде, но не растворим в субстрате и других органических растворителях. Следовательно, при смешении таких реагентов их концентрация в одной фазе оказывается слишком низка для проведения реакции с удобными скоростями. Один из способов преодоления этой трудности — использование растворителя, растворяющего оба реагента. Как обсуждалось в разд. 10.14, для этой цели подходит диполярный апротонный растворитель. Другой спо- [c.91]

    Например, реакция между одноименно заряженными ионами будет сопровождаться повышением плотности заряда на стадии образования активированного комплекса. Следовательно, при замене менее полярного растворителя на более полярный скорость такой реакции возрастет. Напротив, реакция между ионами с зарядами противоположных знаков в хорошо сольватирующих ионы полярных растворителях будет замедляться, поскольку в этом случае в активированном комплексе плотность заряда снижается по сравнению с исходными ионами. Кроме того, полярность растворителя должна оказывать большее влияние на скорость реакций, в которых заряд возникает или нейтрализуется на стадии активации, чем на реакции, сопровождающиеся только делокализацией заряда. Действительно, замена воды на этанол приводит к изменению скорости реакций замещения с возникновением или нейтрализацией заряда в 10 —10 раз, тогда как 5м-реакции нуклеофильного замещения, сопровождающиеся делокализацией заряда, при переходе от этанола к воде ускоряются только в 3—10 раз. [c.205]


    Следовательно, протонные растворители должны, как правило, ускорять реакции нуклеофильного замещения В частности, именно по этой причине 5к-реакции с участием галогеналканов и эфиров сульфокислот обычно проводят в средах, состоящих полностью или частично из воды, спиртов или карбоновых кислот. Энергия водородных связей в начальном и переходном состояниях часто превышает изменение энергии Гиббса в ходе активации, обусловленное электростатическими эффектами растворителей. С другой стороны, в 8к2-реакции (5.101) атакующий нуклеофильный реагент Y также может специфически сольватироваться протонными растворителями тогда его реакционная способность, а следовательно, и скорость 8к2-реакции будут снижаться. Примеры специфической (электрофильной) сольватации анионов-нуклеофилов и уходящих групп в З -реакциях можно найти в работах [264—269, 581—585] опубликованы также соответствующие обзоры [581, 582]., .... [c.299]

    Механизмы реакций замещения. Комплексы с координационным числом 6. Среди комплексов этого типа больше всего изучены комплексы Со(1П), а также Сг(1П) и элементов платиновой группы. Трудности измерений в активных комплексах обусловлены тем, что образующиеся комплексы почти все являются аква-комплексами, поэтому был исследован достаточно ограниченный круг систем. К нуклеофильным реакциям замещения относятся мономолекулярные реакции, для которых скорость реакции определяется разрывом связи при отщеплении основания Льюиса (механизм S.nI), а также бимолекулярные реакции, для которых скорость реакции определяется образованием связи координирующимся основанием и наблюдается много промежуточных продуктов с координационным числом 1 (механизм 5n2). Однако, когда координационное число равно 6, механизм реакций нуклеофильного замещения существенно иной, чем в случае тетраэдрического углерода. Этим отличием дело не ограничивается. Поскольку комплекс слабо связывает молекулы растворителя за пределами первой координационной сферы, они образуют вторую координационную сферу, причем это происходит не только в водных, но и в неводных растворах. Кроме того, комплексные ионы часто образуют с ионами-партнерами ионные пары. Обычно при замещении лигандов в комплексах реа ция начинается с обмена лигандами в координационной сфере. Если обозначить [c.247]

    Скорость реакции между аминами и галогенпроизводными зависит также и от природы галогена, строения галогенпроизводного и природы растворителя. Этот вопрос будет рассмотрен в главе, посвященной реакциям нуклеофильного замещения в алифатическом ряду (стр. 303, 325), так как образование соли замещенного аммониевого основания можно рассматривать как реакцию замещения галогена (X) группой КзЫ  [c.239]

    Поляр1[ый растворитель повышает скорость реакции нуклеофильного замещения, если в активированном комплексе разделение зарядов выражено сильнее, чем в исходных реагентах  [c.239]

    При объяснении закономерностей влияния растворителя на скорость реакций нуклеофильного замещения Хьюз и Инголд исходили из элементарных представлений об электростатическом взаимодействии между ионом и полярной молекулой растворителя (см. с. 34). Несмотря на первую степень приближенности, им удалось достичь хорошей предсказательности, а это, как известно, является отличительным признаком плодотворной теории. [c.78]

    Влияние растворителя ия скорость реакции нуклеофильного замещения у насыщенного атома углд) ода [c.728]

    Э. Хьюза таблице влияния полярного растворителя на скорости реакций нуклеофильного замещения (табл. 4) действие среды предсказано го])аздо определеннее, чем в работе Э. Хьюза н К. Инголда 1935 г. [38, стр. 2521. [c.62]

    Как показали в 1946 г. Дж. Достровски, Э. Хьюз и К. Инголд [42], природа растворителя влияет на скорость реакции нуклеофильного замещения алкилгалогенидов намного слабее, чем строение взаимодействующих молекул. Так, если при понижении содержания этанола в смеси с водой от 80 до 60% скорость мономолекулярного замещения алкилбромидов уменьшается от двух (первичные соединения) до девяти (третичные бромиды) раз, то скорости этой реакции при переходе от третичных к первичным бромидам изменяются намного сильнее (табл. 5). [c.66]

    Многочисленные исследования обнаружили факт влияния растворителя в реакциях типа реакции Гриньяра [16, 46, 66-68]. В большинстве работ указьтается, что сильно сольватирующие растворители увеличивали скорость реакций нуклеофильного замещения, хотя имеются данные и о том, что сольватация уменьшала скорость реакции [3, 4]. Так, реактив Гриньяра реагирует с нитрилами медленнее в сольватирующих растворителях, чем в несольватирующих [4]. [c.206]

    Диметилформамид часто применяется в качестве полярного растворителя в реакциях органических соединений. Охарактеризуйте его влияние на скорость реакций нуклеофильного замещения (5лг1 и 5лг2) у галогеналкилов. [c.78]

    Влиянме растворителя на скорость реакций нуклеофильного замещения [c.55]

    В настоящей работе исследована переэтерификация н-бутилхлорацетата втор-бутилортотитанатом, как пример реакции переэтерификации титаналкоголятами. Последний процесс в смысле модельной реакционной серии может оказаться подходящей для мультипараметровного анализа совместного алия-ния факторов строения, среды и температуры на скорость реакции нуклеофильного замещения при карбонильной группе.Выбор титаналкоголятов в качестве нуклеофильных реагентов обусловлен их физико-химическими свойствами ортотитанаты вторичных к третичных спиртов хорошо растворимы в органических растворителях и мономерны в растворах . [c.178]

    В реакциях нуклеофильного замещения возможны случаи, когда за взаимодействие с субстратом Р—X конкурирует два или несколько нуклеофилов. В частности, во многих растворителях, имеющих нуклеофильные центры, взаимодействие субстрата с реагентом происходит параллельно с взаимодействием субстрата с растворителем. Например, при действии на /и/7< т-бутилхлорид водного раствора азида натрия наряду с /прет-бутилазидом образуется третичный бутиловый спирт. При этом выход азида выше, чем выход спирта, так как реакция с заряженным азид-ионом протекает с большей скоростью, чем с водой  [c.99]

    Реакции с хорошими нуклеофилами в растворителях с низкой иони-ауюшей способностью зависят от структурного типа углеродного атома, у которого происходит замещение. Реакции этого тина наиболее близки к реакциям прямого замещения, они замедляются пространственными затруднениями в переходном состоянин. Относительные скорости реакций алкилхлоридов с иодид-ионом в ацетоне составляют метил- 93, этпл- 1,0 и нзопропил- 0,0076 [62]. Это соотношение скоростей является примером случая, когда доминирует пространственный эффект. Статистический анализ скоростей для 18 групп реакций нуклеофильного замещения субстратов типа ХСН,У, где У — уходящая грунпа и X —Н или алкил, показал, что пространственное влияние X является наиболее важным фактором [03]. В табл, 5,3 приведены некоторые данные, огкосящнеся к этому аспекту. [c.193]

    Для реакций нуклеофильного замещения, механизм которых связан с распределением зарядов в реагирующей молекуле в момент активации, скорость реакции повышается с ростом диэлектрической проницаемости растворителя, что способствует ионизации связи. Так, в реакциях сольволиза грет-бутилхлорида (СНз)зСС1, являющегося излюбленным объектом в исследованиях влияния среды на кинетику химических процессов, протекание процесса связано с промежуточным образованием ионный пары (СНз)зС" "С1 , вследствие чего в ряду растворителей этиловый спирт (ДП = 24,3) — метиловый спирт (ДП = 32,6) —формамид (ДП= 109,5) соотношение скорости реакций равно 1 9 430. Интересно, что в воде, которая из-за своей исключительно высокой сольватирующей способности обеспечивает ионизацию, скорость реакции в 335 000 раз выше, чем в этаноле. [c.78]

    Естественно, что нейтрализация зарядов при реакции нуклеофильного замещения также ведет к тому, что повышение диэлектрической проницаемости растворителя понижает скорость процесса. Так, скорость гидролиза солей триметилсульфония (СНз)з5++0Н = СНзОН+ СНз)28 при переходе от этилового спирта к воде уменьшается в 20 ООО раз. [c.79]

    Приведенные выше правила, называемые правилами Хьюза—Ингольда, позволяют качественно оценить влияние полярности растворителя на скорость любой гетеролитической реакции, если известен ее механизм. Для реакций нуклеофильного замещения типа (5.11) и (5.12)  [c.205]

    В отличие от параметра У, в основе которого лежат кинетические характеристики реакции нуклеофильного замещения, Ги-лен и Насильски [51] предложили параметр полярности растворителей, исходя из константы скорости реакции алифатического электрофильного замещения, а именно реакции брома с тетраметилоловом [c.513]

    Путем таких несложных рассуждений, в принципе, можно предсказать влияние растворителя на скорость любой гетероли-тической реакции с известным механизмом. В табл. 9.3 приведена краткая сводка результатов такого прогнозирования для реакций нуклеофильного замещения у насыщенного атома углерода. В таблицу включены не только 5у2-реакции, но и реакции типа, которые подробно будуг обсуждаться в разделе 9.3. [c.112]

    Скорости обмена лигандов. Поскольку лиганды являются основаниями Льюиса, то реакции их замещения являются реакциями нуклеофильного замещения (Зы) в лигандной сфере центральных ионов. Изучение механизмов органических реакций началось примерно с 1950 г., и по мере развития методов измерения скоростей быстрых реакций накопились многочисленные данные 9 реакциях в лигандной сфере различных металлических ионов. На рис. 4.15 приведены данные о скоростях обмена координационной воды на молекулы воды растворителя, определенные М. Эйгеном и др. в основном релаксационным методом. [c.246]

    НО снижают нуклеофильность алкоксид-иона за счет сильной его сольватации водородными связями. При диссоциации место катиона в координационной сфере аниона занимает протон спирта, и эта замена не на много увеличивает реакционную способность нуклеофила. В то же время в растворителях, которые слабо соль-ватируют алкоксид-ион, удаление катиона приводит к огромным изменениям в скорости реакции. Так, замещение хлора в о- и ж-дихлорбензоле на метокси-грунпу, которое само по себе не идет протекает за несколько часов при добавках 18-крауна-6 [12]. [c.256]


Смотреть страницы где упоминается термин Растворители скорость реакций нуклеофильного замещения: [c.102]    [c.78]    [c.329]    [c.7]    [c.100]    [c.728]    [c.144]    [c.216]    [c.330]    [c.32]    [c.604]   
Растворители в органической химии (1973) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Нуклеофильное замещение скорость

Растворители нуклеофильные

Растворители реакцию замещения

Реакции замещения

Реакция нуклеофильного

Скорость реакции и растворители



© 2025 chem21.info Реклама на сайте