Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение также Реакции замещения нуклеофильное

    Изменение в применяемом нуклеофильном реагенте, т. е. замена вступающей группы, не приводит к изменению скорости реакции замещения по механизму SnI- Это наблюдается, например, при использовании разных галогенидов, поскольку такие реагенты не принимают участия в стадии, лимитирующей скорость реакции. Если же реакция замещения протекает по механизму Sn2, то, чем более нуклеофильным является реагент, тем быстрее должна протекать реакция. Казалось бы, что нуклео-фильность любого реагента должна коррелировать с его основностью, поскольку для реагентов обоего типа характерно наличие доступных электронных пар. Такую параллель, хотя ее часто и используют, ни в коем случае нельзя считать строгой, поскольку такой ион, как Y , проявляет нуклеофильность в реакции замещения (обусловленную наличием у него пары электронов) обычно по отношению к углероду, тогда как его действие в качестве основания связано с передачей пары электронов водороду первый из этих процессов обычно значительно более чувствителен к стерическим факторам. Существенное различие между нуклеофильностью и основностью состоит также в том, что нуклеофильность характеризует скорость реакции, [c.108]


    Нуклеофильное замещение. Три реакции замещения в положение 1 можно рассматривать как реакции нуклеофильного замещения изохинолинового ядра. Сюда относятся аминирование, введение гидроксильной группы и алкилирование металлорганическими соединениями. В последнем случае наряду с замещением наблюдается также и присоединение. [c.314]

    Однако известны реакции нуклеофильного замещения атома водорода (см. разд. 6.10), а также реакции замещения, индуцируемые радикалами, например галогенирование алканов (ср. разд. 11.5.2). [c.41]

    Механизмы реакций нуклеофильного замещения были предметом обширных исследований и обсуждаются в ряде книг [159,251, 252]. Лимитирующая стадия в реакциях замещения в алифатическом ряду может быть моно- или бимолекулярной (5м1 или 5 2). Нуклеофильное замещение в ароматическом ряду, как правило, протекает по двухступенчатому бимолекулярному механизму, причем лимитирующей стадией может быть образование или распад промежуточного соединения. И в случае алифатических, и в случае ароматических соединений часто образуются заряженные комплексы. Во многих случаях изменения величины и распределения зарядов между исходным и переходным состояниями коррелируют с влиянием среды на скорость нуклеофильного замещения в ароматическом и алифатическом рядах [159]. Различные изменения зарядов, теоретически возможные в реакциях нуклеофильного замещения, могут быть причиной влияния мицелл на скорость этих реакций. По имеющимся данным, мицеллы влияют на скорости реакций нуклеофильного замещения в алифатическом ряду только в тех случаях, когда хотя бы один из реагентов заряжен. Однако вполне возможно, что будут обнаружены мицеллярные эффекты в реакциях нуклеофильного замещения между нейтральными молекулами в тех случаях, когда распределение реагентов между мицеллами и объемом растворителя, а также их реакционная способность в этих двух фазах сильно различаются. [c.316]

    Исследования реакций замещения тетраэдрических соединений 8(У1) не многочисленны, но достаточны, чтобы сделать вывод о то.м, что они также идут по механизму ассоциативного замещения. Данные, из которых мо кно было бы получить количественные характеристики нуклеофильной способности различных реагентов по отношению к соединениям 3(У1), отсутствуют. Однако некоторая информация может быть получена из имеющихся данных по конкурентным реакциям. Так, например, было определено отношение [c.386]


    Аналогично реакции нуклеофильного замещения N2, реакция элиминирования у первичных алкилгалогенидов, названная 2, является бимолекулярном, и ее скорость также зависит как от концентрации субстрата, так и от концентрации реагента который действует в данном случае не как нуклеофил, а как основание. [c.106]

    Помимо реакций нуклеофильного замещения возможны реакции, в которых от молекулы органического соединения отщепляются, также говорят элиминируют, атомы или группы атомов. Такие реакции называются реакциями отщеплении или элиминирования. При этом в исходной молекуле образуются новые о- и Л-связи. Отщепляющиеся фрагменты называются уходящими группами. [c.230]

    В т. 3 рассматриваются реакции ароматического нуклеофильного и свободно-радикального замещения, а также реакции присоединения к кратным связям углерод—углерод и углерод—гетероатом. [c.4]

    На электрофильность реакционного центра субстрата влияет также и заместитель, вытесняемый при нуклеофильной атаке. Своим индуктивным эффектом он может уменьшать или увеличивать электронную плотность реакционного центра, влияя на легкость образования о-комплекса. Например, из четырех галогенов максимальным — /-эффектом обладает фтор, а минимальным иод. Поэтому фтор наиболее благоприятствует образованию о-комплекса с нуклеофилом и реакции активированного нуклеофильного замещения фтора идут с максимальной скоростью несмотря на то, что связь углерода с фтором значительно прочнее, чем связь углерода с другими галогенами. [c.158]

    Известно (разд. 5.13 и 8.12), что алкилгалогениды вступают не только в реакции замещения, но также и реакции элиминирования — реакции, которые важны для синтеза алкенов. И элиминирование, и замещение протекают под действием основных реагентов, и, следовательно, между ними возможна конкуренция. Интересно выяснить, как различные факторы, такие, как строение галогенида и природа используемого нуклеофильного реагента, влияют на направление реакции. [c.447]

    Реакция алкилгалогенидов с цианид-ионом протекает как нуклеофильное замещение (разд. 14.6). Поскольку H N — очень слабая кислота, цианид-ион является сильным основанием как и следовало ожидать, этот сильно основный ион может отрывать ион водорода, вызывая таким образом элиминирование наряду с замещением. Действительно, для третичных галогенидов элиминирование — главная реакция даже в случае вторичных галогенидов выход продуктов замещения не высок. В этом случае мы также встречаемся с тем фактом, что реакция нуклеофильного замещения синтетически важна только при использовании первичных галогенидов. [c.561]

    В то же время главное алифатическое свойство, а именно легкость реакции замещения с нуклеофильными реагентами, например гиДроксильным ионом, аммиаком и аминами, может быть результатом переходного резонансного состоя-ния структур типа ХИ1, которое возникает вследствие понижения энергии активации. Реакция хлористого пикрила с такими слабыми нуклеофильными реагентами, как вода, является совершенно аналогичной [116]. Применение кислотного катализа при аминолизе хлорпиримидинов доводит этот эффект до максимума, способствуя образованию структуры XIV [117]. Было установлено, что аминолиз 4-хлорпиримидина контролируется также степенью нуклеофильности реагирующего амина [118]. Так, 2-амино-4-хлор-6-метилпиримидин легко взаимодействует с анилином в соляной кислоте и только едва реагирует с более нуклеофильными реагентами—пиперидином и диэтиламином. Однако в буферных растворах при pH 10 реакция проходит легко и с двумя последними соединениями. Об алифатическом характере указанных галогенопроизводных свидетельствует также и проводимая по Фриделю—Крафтсу реакция 4-хлор-5-этоксиметил-2-метилпиримидина с бензолом, не имеющая места в менее активированном ряду пиридина [119]. Кроме того, эти соединения часто легко восстанавливаются цинковой пылью и другими мягкими восстановителями. Хотя описано много примеров частичного нуклеофильного обмена или восстановления полигалогенопиримидинов, относительная реакционная способность положений 2 и 4 (или 6) экспериментально точно не установлена по-видимому, в обоих случаях она должна быть приблизительно равной. Соотношение получаемых соединений в большей степени зависит от легкости их выделения. [c.208]

    В то же время главное алифатическое свойство, а именно легкость реакции замещения с нуклеофильными реагентами, например гиДроксильным ионом, аммиаком и аминами, может быть результатом переходного резонансного состоя-ния структур типа XIII, которое возникает вследствие понижения энергии активации. Реакция хлористого пикрила с такими слабыми нуклеофильными реагентами, как вода, является совершенно аналогичной [116]. Применение кислотного катализа прй аминолизе хлорпиримидинов доводит этот эффект до максимума, способствуя образованию структуры XIV [117]. Было установлено, что аминолиз 4-хлорпиримидина контролируется также степенью нуклеофильности реагирующего амина [118]. Так, 2-амино-4-хлор-6-метилпиримидин легко взаимодействует с анилином в соляной кислоте и только едва реагирует с более нуклеофильными реагентами—пиперидином и диэтиламином. Однако в буферных растворах при pH 10 реакция проходит легко и с двумя последними соединениями. Об алифатическом характере указанных галогенопроизводных свидетельствует также и проводимая по Фриделю—Крафтсу реакция 4-хлор- [c.208]


    К основным методам получения дисульфидов относятся также реакции нуклеофильного замещения с участием различных сульфенильных производных и тиолов или тиолят-ионов. Эти реакции можно использовать и для синтеза несимметричных дисульфидов (уравнение 80), однако выход дисульфидов может уменьшаться в результате последующих реакций обмена тиол — дисульфид, которые происходят быстро в основной среде. [c.449]

    В настоящее время считают, что константы Свейна п и константы Эдвардса или Р в действительности являются переменными величинами. Соотношение нуклеофильных свойств в ряду галогенид-ионов в реакциях замещения у р -углеродного атома зависит от природы растворителя. Константы скоростей реакций 5дг2-замещения между галогенидами лития и алкилга-логенидами в ацетоне убывают в следующем порядке 1 >Вг > >01 (также располагаются величины ). Однако при использовании более легко диссоциирующих солей тетрабутиламмо-нийгалогеиидов в ацетоне происходит обращение ряда (С1 >Вг >1 ) [97]. Кроме того, если учесть ассоциацию с галогенид-ионами, константы которой известны, то для свободного галогенид-иона в вышеупомянутых реакциях галогени-дов лития в ацетоне фактически сохраняется та же последовательность. Нуклеофильные свойства галогенид-ионов в воде убывают в ряду 1">Вг">С1 , как и следовало ожидать, исходя из представлений о большей гидратации малых ионов. При увеличении размера иона поляризуемость растет, но степень сольватации уменьшается. Так, Паркер [98] показал, что порядок изменения констант скоростей анионной атаки, протекающей по типу 5х2-замещения, меняется пр1 переходе от протонных к биполярным апротонным растворителям, в которых он имеет следующий вид Р >СГ, N >Bг , N3 > Г > 5СЫ > [Пикрат] . [c.53]

    Известны также реакции замещения в неактивированных аренах, связанные с переносом одного электрона, т. е. радикальные процессы, а часто даже цепные реакции. Подобные реакции 8ык1 приводят к тем же результатам, что и ионное нуклеофильное замещение. [c.479]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Реакции нуклеофильного замещения часто сопровождаются отщеплением. При взаимодействии со щелочами галоидные алкилы образуют не только спирты, но и непредельные соединения. Последние возникают так н<е как побочный продукт действия минеральных кислот на спирты. Разложение четвертичных аммониевых оснований также дает в качестве побочного продукта замещенный этилен. Все это подтверждает предположение о существовании общего механизма замещения и отщепления. Реакция замещения обозначается символом Е (elimination)..Так же как и для нуклеофильного замещения, здесь возможны два механизма бимолекулярный ( 2) и мономолекулярный [c.200]

    Известны также. реакции нуклеофильного замещения. Они происходят под действием реагентов, несущих отркиательный заряд (например, при действии иона ОН ), и новая ковалентная связь с атомом углерода возникает за счет пары электронов, предоставляемой реагентом. Такие реагенты (группы) связываются непосредственно с ядром атома углерода и называются нуклеофильными ( любящими ядро ). Реакции нуклеофильного замещения водорода в бензольном ядре встречаются сравнительно редко. [c.333]

    По механизму нуклеофильного замещения протекают также реакции галогеналканов с другими (кроме воды) нуклеофилами, такими, как цианид-анион СЫ , ацетат-анион СНзСОО , аммиак ЫНз, амины КЫНа и многие другие. [c.630]

    Доказательством подобного механизма может служить тот факт, что арилирование не сопровождается изотопным эффектом, т. е. дейтерий и тритий замещаются с той же скоростью, что и протий, откуда следует, что разрыв связи углерод — водород не является стадией, лимитирующей скорость реакции. Относительное изменение реакционной способности монозамещенных бензола в случае гомолитической атаки выражено значительно слабее, чем в случае атаки электрофильными (см. стр. 154) и нуклеофильными (см. стр. 168) реагентами. По реакционной способности в отношении гомолитической атаки все монозаме-щенные бензола различаются не более чем в десять раз, причем большинство из них, независимо от природы заместителя, атакуется легче, чем сам бензол. Ориентирующее влияние заместителя при гомолитическом замещении также выражено слабее, чем при электрофильной атаке, и все заместители — как электронодонорные, так и электроноакцепторные, несколько облегчают гомолитическую атаку в орто- и пара-положения, по-видимому, за счет возможности делокализации. [c.304]

    Пиридин и его гомологи вступают в реакции электрофильпого и нуклеофильного замещения. Известны также реакции, в которых пиридин играет роль основания или нуклеофила. Эти реакции протекают по атому азота и связаны с наличием неподеленной пары электронов. В реакциях алектрофильного замещения пиридин ведет себя подобно сильно дезактивированному производному бензола. Он нитруется, сульфируется и галогенируется только в очень жестких условиях. В реакцию Фриделя — Крафтса не вступает. Замещение происходит препмущественно в положении 3  [c.114]

    В результате замещения также получают в зависимости ог типа реакции разные конечные продукты, если протекают К(я1(у-рентиые реакции различных нуклеофильных реагентов или с. щ этн реагенты бифуикцноиальны. Этот вопрос более подробно 1С-смотрен в разд. Г,2.3. [c.242]

    Естественно, что нейтрализация зарядов при реакции нуклеофильного замещения также ведет к тому, что повышение диэлектрической проницаемости растворителя понижает скорость процесса. Так, скорость гидролиза солей триметилсульфония (СНз)з5++0Н = СНзОН+ СНз)28 при переходе от этилового спирта к воде уменьшается в 20 ООО раз. [c.79]

    Эти соединения получены также реакцией нуклеофильного замещения хлора в хлорметиленфосфоновой кислоте, см. например, схему 1 4.13 [44, с. 60]. [c.91]

    Другим примером непригодности аммиачного метода является получение алкоксида олова(ТУ) [13]. При обработке аммиаком спиртового раствора хлорида олова(IV) образуется обильный осадок хлорида аммония, но после фильтрования не получается алкоксид олова(1У) нужной чистоты. Образующийся при этом сложный продукт содержит заметные количества хлорида и аммиака (или амида) и его нельзя очистить вакуумной дистилляцией. Причины такого поведения не ясны, на присутствие хлорида в этом случае не может быть обусловлено основностью алкоксидов олова (IV), так как последние являются кислотами Льюиса и титруются алкоксидами щелочных металлов. Возможно, сольволиз алкоксидов хлорида олова(1У) происходит не до конца вследствие прочности ковалентной связи Зн—С1, и по этой же причине не заканчивается также реакция с аммиаком. Возможно также, что образуется устойчивый шестикоординатный комплекс ЗпС1(ОК)з(МНз)(КОН). При реакции с алкоксидом натрия, вероятно, происходит нуклеофильное замещение ионами алкоксида [c.233]

    В реакциях с участием биполярных активированных комплексов распределение зарядов в последних существенно отличается от распределения зарядов в начальном состоянии. Помимо рассмотренных в разд. 5.3.1 5м1-, 8м2-, Ер и Ег-реакций изучалось влияние растворителей и на другие реакции, протекающие через биполярные активированные комплексы, в том числе реакции ароматического нуклеофильного (ЗмАг) и элект-рофильного (ЗеАг) замещения, электрофильного алифатического замещения (8е1 и 5е2), алифатического электрофильного (Ае) и нуклеофильного (Ам) присоединения, циклоприсоединения, расщепления цикла, альдольной конденсации, а также реакции перегруппировки, процессы фрагментации и изомеризации. Ниже на ряде типичных и самых наглядных примеров, заимствованных из огромного количества литературных данных, будет продемонстрирована эффективность простых правил Хьюза — Ингольда, хотя они и носят только качественный характер. [c.218]

    Приведенные в табл. 5.15 данные о реакции 8 свидетельствуют о том, что относительная реакционная способность анионов как нуклеофильных агентов в газовой фазе примерно такая же, как в расплавах солей и в биполярных растворителях-НДВС [285, 290]. Этот факт еще раз говорит о том, что наблюдающееся в протонных растворителях обращение относительной нуклеофильности анионов (в сравнении с газовой фазой или растворителями-НДВС) обусловлено специфической сольватацией. В то же время при сходстве относительных нуклеофильностей в ацетонитриле и в газовой фазе [282, 285, 290] абсолютные скорости реакций в газовой фазе на несколько порядков выше, чем в ацетонитриле. Так, скорости реакций замещения анионов с га-логенметанами в газовой фазе превышают скорости аналогичных реакций в растворе в 10 раз и более [285, 290]. Столь большая разница в абсолютных скоростях реакций свидетельствует о том, что растворители снижают реакционную способность лю--бого типа [282] см. также разд. 5.2. [c.309]

    В реакции внутримолекулярного нуклеофильного замещения а,Р-ненасыщенного циклогексенонтоэилата отнощение выходов продуктов а- и -алкилирования также можно регулировать путем подбора соответствующего растворителя. Необходимому у-алкилированию (завершающей стадии в полном синтезе сескви-терпена р-ветивона) благоприятствует МаОН в водном СНзЗОСНз, в то время как в системе (СНз)зСОК—(СНз)зСОН преимущественно осуществляется а-алкилирование [670]. [c.351]


Смотреть страницы где упоминается термин Замещение также Реакции замещения нуклеофильное: [c.21]    [c.315]    [c.404]    [c.53]    [c.404]    [c.458]    [c.136]    [c.271]    [c.5]    [c.388]    [c.19]    [c.157]    [c.485]    [c.359]    [c.195]    [c.474]    [c.1234]    [c.1316]    [c.292]    [c.73]    [c.322]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.369 , c.370 , c.380 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Замещение также Реакции замещения

Реакции замещения

Реакция нуклеофильного



© 2025 chem21.info Реклама на сайте