Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа кислотно-основной диссоциации

    Изменения потенциала в зависимости от каждого из этих параметров (при постоянстве остальных) геометрически выражаются кривой, состоящей из ряда линейных участков. Точки пересечения двух соседних линейных участков отвечают соответствующей константе кислотНо-основной диссоциации или комплексообразования. На линейном участке значение концентрации одного из веществ (комплексов) значительно превышает все остальные слагаемые уравнения (31), т. е. на линейном участке [c.195]


    Константы кислотно-основной диссоциации функциональных групп определяют из данных потенциометрического титрования. После определения содержания функциональных групп для каждой точки титрования рассчитывают степень их нейтрализации рабочим раствором — а. Если ионит содержит функциональные группы с двумя ступенями ионизации, (например, КФ), то расчет а проводят для каждой ступени. Для двух- и более функционального ионита значения а рассчитывают для каждой группы, исходя из содержания их в фазе полимера. [c.109]

    Рубинштейном с сотр. [45] предложен графический метод расчета констант кислотно-основной диссоциации ионогенных групп ионита и ионитного комплекса с однозарядным металлом. В основе графического метода лежат предложенные авторами уравнения расчета указанных констант с помощью экспериментальных изотерм сорбции. [c.122]

    Во-вторых, ионогенные группы даже монофункционального ионита неоднородны из-за неравномерного распределения межцепных связей. Определяемая экспериментально константа кислотно-основной диссоциации не является термодинамической. В каждом конкретном случае она характеризует концентрационную (кажущуюся) константу диссоциации среднестатистической ионогенной группы ионита. Такое допущение можно считать вполне оправданным [51]. [c.123]

    Различными независимыми методами установлено, что ион металла, как правило, координирует несколько лигандных групп полимера [16]. Последние не находятся именно в той конформации, которая благоприятна для иона комплексообразователя, а располагаются статистически. В результате процесс комплексообразования сопровождается сменой конформаций цепей полимера, расположенных между узлами сетки. Изменение конформа-ционного набора полимера сопровождается энергетическими затратами системы при комплексообразовании на деформацию полимерной матрицы — д. Помимо этого, константа кислотно-основной диссоциации ионогенных групп полимера и, следовательно, их электронодонорные свойства зависят от жесткости полимерной матрицы [c.179]

    Если реакционный центр остается постоянным, то влияния субстрата и растворителя устраняются в пределах реакционной серии и константа скорости реакции нуклеофильного замещения пропорциональна константе кислотно-основной диссоциации нуклеофила [196]. Если ввести статистическую поправку на различное число водородных атомов в первичных, вторичных и третичных аминах [197], можно рассматривать их совместно. [c.215]

    Нет никаких причин, по которым нельзя было бы описывать эту реакцию при помощи константы кислотно-основного равновесия, как это сделано для кислот в табл. 5-3. Согласно теории Бренстеда-Лаури, ион аммония NH4 представляет собой сопряженную кислоту основания NH3. Совсем не обязательно, чтобы в кислотно-основной паре нейтральной была именно кислота, а основание несло на себе электрический заряд, как это имеет место в парах НС1/С1 и H N/ N . Ион NH можно отнести к кислотам, точно так же как НС1 или H N, и хотя эта кислота слабее, чем НС1, но она оказывается сильнее, чем H N. Таким образом, реакцию аммиака с протоном можно рассматривать как диссоциацию кислоты  [c.221]


    Выражение (5-34) для константы диссоциации слабой кислоты получено при помощи двух уравнений, основанных на законах сохранения. Это уравнение материального баланса, согласно которому общее количество аниона кислоты в растворе остается постоянным, а также уравнение баланса зарядов, согласно которому раствор в целом должен оставаться нейтральным. Выражение для константы диссоциации слабой кислоты может рассматриваться как квадратное уравнение, которое решают прямым путем или методом последовательных приближений оно справедливо для растворов, кислотность которых достаточно высока, чтобы можно было пренебречь вкладом в [Н ] самодиссоциации воды. В противном случае приходится пользоваться более сложным соотношением (см. приложение 5). Кислотно-основные индикаторы сами являются слабыми кислотами или слабыми основаниями, обладающими различной окраской в диссоциированной и недиссоциированной формах. [c.257]

    Сила кислоты НЛП основания Кислотные константы или основные константы моль/л Степень диссоциации а [c.86]

    Если потенциалопределяющими ионами являются ионы Н+ и ОН , то отсутствие заряда на поверхности (например, оксидов элементов) будет соответствовать определенному значению pH, называемому изоэлектрической точкой. В этой точке числа положительных и отрицательных зарядов одинаковы — общий заряд поверхности равен нулю. Очевидно, что изоэлектрическая точка зависит от кислотно-основных свойств вещества. Сродство к протону можно представить следующими константами диссоциации  [c.50]

    В данном учебном пособии сконцентрирован, систематизирован и подан с единых теоретических позиций основной материал, относящийся к каждой теме. Для аргументации высказанных положений широко использованы современные представления электронной теории органической химии и основные физико-химические характеристики органических веществ (ди-польные моменты, межатомные расстояния, энергии диссоциации связей, константы кислотности и др.). [c.5]

    В водных растворах в области средних значений pH феноловый красный (фенолсульфофталеин) ведет себя как одноосновная кислота. Е этой области pH он отдает протон второй оксигруппы и в результате перехода его в основную форму наблюдается изменение окраски растворов из желто-оранжевой в малиново-красную. Максимум полосы поглощения кислотной формы соответствует 440 нм, для основной — 570 нм. Исследуя спектры поглощения растворов фенолового красного в интервале pH 5—10, можно определить константу кислотной диссоциации данного индикатора. [c.67]

    Константы скорости прямых стадий можно найти из рКа соответствующей функциональной группы и константы скорости обратной (диффузионно-контролируемой) реакции в виде 10 Ка-с и (10 - lu)/ < a M соответственно, где Ка — константа кислотной диссоциации ВН /С( — константа ионизации воды. Константа скорости всего процесса имеет максимальное значение, равное с , при условии Ка 10 М. Действительно, при Ка < Ю М меньше, чем 10 с , становится константа скорости диссоциации кислоты ВН (реакция а) с другой стороны, если Ка > 10 М, меньше, чем предельное значение 10 , становится константа скорости гидролиза основания (реакция б). Таким образом, максимальная константа скорости кислотно-основного катализа с участием воды равна 10 с  [c.273]

    Вследствие сочетания различного рода взаимодействий между растворителем и участниками реакции положение равновесия зависит от многих факторов. Так, протолитическое равновесие между кислотой и основанием при изменении растворителя зависит не только от кислотности (основности) растворителя, но и от его способности к образованию координационных соединений. Поэтому, например, константы диссоциации карбоновых кислот в воде в 10 —10 раз больше, чем в безводном этаноле. [c.452]

    Если обозначить концентрацию электролита, распадающегося на два иона, через св, а степень его диссоциации в данном растворе через а, то концентрация каждого из ионов будет сва, а концентрация недиссоциированных молекул св(1 — о). Тогда уравнение константы протолиза К к, о (либо константы кислотности, либо константы основности) принимает вид  [c.239]

    Существенную роль протолитические реакции играют в кислотно-основном катализе, когда катализатором является кислота или основание. Сюда относится больщинство реакций в растворах. Катализатором могут служить как молекулы кислоты или основания, так и продукты их диссоциации, а возможно те и другие одновременно. Представим константу скорости в виде [c.346]

    Таким образом, реакция нейтрализации сводится всегда к взаимодействию ионов Н и ОН и в разбавленных растворах сильных кислот и оснований должна характеризоваться постоянством теплового эффекта независимо от природы кислоты и щелочи. Теория Аррениуса была широко применена к трактовке различных кислотно-основных равновесий. Для процессов диссоциации кислоты НА и основания МОН закон разведения Оствальда можно записать в виде (1.7), где К обозначает так называемую кажущуюся константу диссоциации соответственно кислоты (/Са) или основания Кв) - [c.11]


    Общие рекомендации по выбору растворителя для титрования. Из уравнений (11.40) —(11.43) следует, что полнота протекания кислотно-основных реакций прямо пропорциональна константе диссоциации растворенного соединения и обратно пропорциональна ионному произведению растворителя. Обе эти величины определяются диэлектрической проницаемостью растворителя. Полные уравнения для констант равновесия включают еще константы диссоциации титрантов и образующихся солей. Если образующиеся соли нерастворимы, то в уравнения входят величины произведений растворимости. [c.200]

    Количественно кислотно-основные свойства ионитов, подобно растворимым электролитам, оценивают по величине константы диссоциации, определяемой путем титрования. [c.342]

    Потенциометрическое титрование амфолита в форме внутренней соли позволяет определить не только содержание различных функциональных групп в фазе полимера, но и константы их диссоциации. Значительно труднее идентифицировать кривые потенциометрического титрования амфолита в протонированной (кислой) и щелочной формах. Из-за появления положительных или отрицательных зарядов по цепи полимера весьма сильно изменяются константы кислотно-основной диссоциации функциональных групп амфолита. Подобное явление от- [c.112]

    Зная константу равновесия реакции (X) lg/(p и константу кислотно-основной диссоциации ионогенных групп полимера рКа, из этого уравнения можно рассчитать со-ста (га) и константу устойчивости ионитного комплекса (Ig/Сует). Константу равновесия /Ср(Х) можно записать также в виде [c.139]

    Величина аопт зависит от природы анионита (концентрации координационно-активных групп и степени их кислотно-основной диссоциации), природы металла (произведения растворимости гидроксида, константы устойчивости полимерного комплекса). На рис. 4.8 приведены данные о сорбционной емкости по ионам меди (И) некоторых анионитов. Варьируя степень протонирования ионогенных групп ионита, можно изменять [c.197]

    Характер влияния процессов ассоциации-диссоциации на подвижность элементов не зависит от конкретного типа процесса — комплексообразования, образования ассоциатов или кислотно-основной диссоциации, а определяется различием прочности соответствующих соединений, мерой которой служат константы ассоциации, диссоциации и комплеисообразоваиия. [c.138]

    При растворении 0з04 в воде образуется На [0з04 (ОН) а]. Реакция такого раствора нейтральная, так как первая и вторая константь кислотной диссоциации данного соединения очень малы (они равны соохветственно 0 и 10 , а константа основной дис- [c.577]

    В связи с этим, а также с уменьшением объема аудиторных часов особое значение приобретает самостоятельная работа студентов. С этой целью был разработан ряд индивидуальных заданий для студентов технологического факультета УГНТ по расчету кривых титрования с обоснованием способа титрования, выбором индикаторов и расчетом индикаторных ошибок. Перед хорошо успевающими студентами ставится более сложная задача, требующая применения знаний по математике и информатике. Им было предложено составление программ для расчета кривых титрования кислотно-основного, окислительно-восстановительного титрования с оформлением их в виде таблиц и графических зависимостей. В ходе расчета задаются константы, характеризующие реагенты константа диссоциации, стандартные окслительно-восстановительные потенциалы и концентрации растворов. Результаты расчетов наглядно иллюстрируют зависимость изменяющихся характеристик раствора от перечисленных выше факторов и их влияние на вид кривых титрования и могут быть использованы при изучении теоретического материала на занятиях. [c.173]

    В зависимости от химической природы растворителя и растворенного вещества растворитель оказывает соответствующее влияние на степень диссоциации протолита, при этом решающее значение имеют либо кислотно-основные свойства растворителя (константа автопротолиза, ), либо величина его диэлектрической проницаемости ( ). При увеличении кислотных свойств растворителей усиливается диссоциация растворенных в них протолитов по типу основания, число веществ, проявляющих основные свойства, растет, а кислотные - уменьщается. Увеличение основных свойств растворителей приводит к более сильному проявлению кислотных свойств протолитов, к увеличению числа веществ, обладающих кислотными свойствами и уменьшению числа веществ с основными свойствами. [c.90]

    Полученные результаты титрования представляют в форме трех кривых (рис. 12). Применение титриметрического метода с введением сильной кислоты в качестве фона вместо нейтрального электролита обладает тем преимуществом, что при этом строго стандартизированы условия проведения эксперимента во всех его сериях. Применяют различные приемы расчета экспериментальных результатов рН-метрических измерений. Исходными моментами этих расчетов является знание начальных концентраций каждого из исследуемых компонентов системы, нахождение констант кислотности или основности лиганда и составление уравнений, описывающих условия материального баланса и электронейтральности. При этом получают систему из т уравнений с П неизвестным, где т > П. Для рещения систем таких уравнений предложены разнообразные алгебраические и графические преобразования, позволяющие рассчитать, основываясь на ряде допущений, соответствующие константы устойчивости комплексов аналогично тому, как это показано на примере расчетов константы диссоциации кислот, по Шварцер-баху. В других случаях используют прием введения вспомогательных функций, легко рассчитываемых из экспериментальных данных и связанных простыми зависимостями искомыми константами. [c.111]

    Окислительный потенциал для реакций изменения валентности имеет такое же значение, как произведение растворимости для процессов образования и растворения осадков или константы диссоциации кислот и оснований для кислотно-основных процессов. Реакция (1), очевидно, будет итти вправо в том случае, если Кокис, притягивает электроны сильнее, чем их притягивает Вокис,- [c.349]

    Однако если в механизм реакции входит равновесие с участием слабых кислот или оснований, то можно наблюдать более высорсую скорость реакции в 020. Причина этого состоит в том, что константы диссоциации слабых кислот и оснований в О2О меньше, чем в Н2О (в 2—4 раза). Ионное произведение тяжелой воды 7(о2о = 0,145-10 также более чем в пять раз меньше, чем ионное произведение Н2О (разд. 35.4.1.4). Этот фактор становится особенно существен при кислотно-основном катализе. Вернемся к уравнению (135) можно легко понять, что в случае специфического кислотного катализа, т. е. при наличии предшествующего протолитического равновесия ([реакция (131)], скорость катализируемой реакции в О2О оказывается больше, чем в Н2О. Константа скорости в уравнении (135) равна [c.200]

    Оценку кислотно-основных свойств растворителей наиболее удобно проводить на основе констант автопротолиза растворителя, а также констант диссоциации кислот и оснований (табл. В. 18). Значения р/С относят к стандартной системе, в качестве которой выбрана вода, т. е. для получения сравнимых данных рассматривают протолиз молекул растворителя в двух направлениях  [c.455]

    Значение /Са=Ю 3 соответствует истинной константе кислотной диссоциации Н2СО3. Если же учитывать и растворенный СО2, получают важную для практики кажущуюся константу К К <К ). На кислотно-основное равновесие, устанавливающееся при растворении СО2, можно влиять, например сдвигать его в сторону образования ионов СОз путем добавления ионов ОН-. Следует заметить, что образование кислоты при растворении СО2 в воде происходит медленно (опыт 10), так как присоединение молекулы воды к двойной связи С = 0 идет не по ионному механизму. [c.561]

    ЛИЧИНОЙ pH, ПО НИМ нельзя определить равновесные концентрации кислоты и аниона (или основания и катиона). Но для оценки кислотно-основного равновесия необходимо знать именно эти величины. Такую возможность дают так называемые логарифмические рН-диаграммы. Для их построения откладывают на оси абсцисс значения pH, а в области отрицательных значений оси ординат — значения десятичных логарифмов концентраций (в одинаковом масштабе). На рис. Д.39 изображена логарифмическая диаграмма, построенная для одноосновной кислоты СбНзСООН с константой диссоциации /(5 = 6,46 моль/дм (р/С5 = 4,19) и общей концентрацией Со=10 2 моль/дм . На примере диаграммы, изображенной на рис. Д.39, можно дать методику применения логарифмической диаграммы общую концентрацию Со определяют в точке, в которой ветвь кривой НХ (линия кислоты), параллельная оси pH, или соответственно кривой X (линия основания) пересекает ось ординат, так что в этой точке пересечения lg = lg o. Силу кислоты, характеризующуюся константой диссоциации Ks, определяют по уравнению pH = pJ < s, беря значение pH на параллельной ветви кривой НХ, начиная с которого (при одном и том же масштабе по осям [c.123]

    Они соответствуют реакциям катионной кислоты ЗН+ (а), нейтральной кислоты 5Н (б) и анионной кислоты 5Н (в). В случае (а) между компонентами реакции не происходит кулоновского взаимодействия, величина которого зависит от диэлектрической проницаемости (ДП) растворителя. В случае (б) и еще в большей степени в случае (в) эти взаимодействия про- являются сильнее они тем больше, чем меньше значение ДП. Равновесие обеих реакций тем сильнее сдвинуто в прямом направлении, чем больше значение ДП, и наоборот. Из этого следует, что константы кислотности катионных кислот зависят не от значения ДП, а только от основности растворителя. Напротив, кислотность нейтральных и еще в большей степени анионных кислот в растворителях с низким значением ДП меньше, чем в растворителях с высокой ДП, если допустить, 1что кислотность растворителя не изменяется. Если катионная и нейтральная кислоты, находящиеся в смеси, из-за сходства кислотных свойств титруются совместно, то при переходе к. растворителю с другим значением ДП становится возможным их дифференцированное титрование. Это правило применимо также и при титровании кислоты яо двум ступеням диссоциа- ции. Если растворитель характеризуется низким, значением ДП, то кислоту можно нейтрализовать последовательно по жаждой ступени диссоциации, в то время как в растворителе с высокой ДП происходит нейтрализация по двум ступеням одновременно (рис. Д. 146). Растворители с небольшими зна- чениями ДП обладают большой склонностью к образованию ассоциатов различных типов, в связи с чем двухступенчатые процессы могут быть кажущимися. Образование растворенными частицами ассоциатов и взаимодействие их с растворите- [c.344]

    Для характеристики кислотных свойств сильных кислот Л. Гаммет предложил использовать функцию кислотности Но, экспериментально определяемую с помощью цветных кислотно-основных индикаторов-оснований. Из выражения константы диссоциации протонированной формы индикатора-осно-вания [c.60]

    Из уравнения (3.75) следует, что тепловому эффекту в 5 кДж/моль соответствует изменение р/С на 0,03, при изменении температуры на 10°. Тепловой эффект диссоциации многих слабых кислот и оснований в водных растворах находится в пределах от —12,0 до 12,0 кДж/моль, что соответствует изменению рЛ примерно на 0,071 единицы при изменении температуры на 10°. Это сравнительно небольшое число, поэтому во многих химикоаналитических расчетах кислотно-основных равновесий влиянием температуры пренебрегают. Наибольшее влияние температура оказывает на процессы типа (3.44), связанные с диссоциацией воды на ионы. Процесс НОН = Н+ + 0Н существенно эндо-термичен (АЯ = 56,1 кДж/моль), поэтому с увеличением температуры константы равновесия таких процессов заметно увеличиваются. [c.61]

    Обычно кислотность (по Бренстеду) оценивается константой кислотной диссоциации в воде К [А"1 (НаО+1 [АН]- чем выше тем сильнее кислота сильные кислоты (H IO4, H2SO4, НС1) практически полностью диссоциированы на ионы в разбавленных водных растворах слабые кислоты (СН3СООН) диссоциированы в незначительной степени (рК 4,76). Основность оценивается константой равновесия В + Н,0. ВН+ + НО-, Кь = [НВ+КНО -] [В]- чем больше /Сь. тем сильнее основание. Диссоциация кислот и оснований зависит от растворителя, его диэлектрической проницаемости, сольватирующей способности и способности выступать в качестве кислоты или основания. [c.225]

    Полная кислотно-основная реакция (VI.6 1), т. е. реакция диссоциации кислоты НА в растворителе ЗН, характеризуется константой равновесия -К,,д, которая связана с Ккасл и Коса соотношением [c.184]

    С помогцью рЛ можно охарактеризовать степень диссоциации кислоты (р/Са) или соггряжеиной кислоты (рЛ )ви- Наряду с константой кислотности (/(а) существует также понятие о константе основности [c.233]

    Как и в спиртах, глубина протекания кислотно-основных реакций в ЛУК определяется отношением констант диссоциации титруемых соединений и ионного произведения растворителя. В протогенных растворителях усиливаются основные свойства растворенных веществ (см. 8.3), а кислотные свойства их уменьшаются. Поэтому условия титрования кислот, например, в ЛУК ухудшаются в связи с уменьшением К иа и Кспа/Кз- Улучшение титрования оснований обусловливается увеличением и уменьшением Ка по сравнению с [c.199]


Смотреть страницы где упоминается термин Константа кислотно-основной диссоциации: [c.265]    [c.3]    [c.203]    [c.447]    [c.448]    [c.371]    [c.468]    [c.174]    [c.128]    [c.190]    [c.243]   
Комплексообразующие иониты (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

Кислотности константа

Константа диссоциации

Константа кислотная

Константа основная

Константа основности

ЛИЗ кислотно основной



© 2025 chem21.info Реклама на сайте