Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография поверхностная

    I. Адсорбция 181 2. Уравнение Ленгмюра. Изотермы адсорбции ( 3 3. Хемосорбция и физическая адсорбция 185 4. Адсорбция ионов из растворов 187 5. Уравнения Гиббса, Шишковского и правило Траубе 191 I 6. Поверхностно-активные вещества (ПАВ) и их применение 195 7. Понятие о хроматографии ]95 [c.6]

    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]


    Первый том Курса физической химии включает термодинамику и ее приложения. Главы, посвященные основам термодинамики, термодинамике растворов и химической термодинамике, написаны Я. И. Герасимовым раздел Гетерогенные равновесия — В. П. Древингом раздел Поверхностные явления и адсорбция и дополнение Газовая хроматография —А. В. Киселевым. [c.9]

    В [19] исследован механизм удерживания СбО и С70 и высших фуллеренов при разделении методом жидкостной хроматографии с использованием модифицированных хроматографических неподвижных фаз с различными химически связанными алкильными группами. Показано важное значение поверхностной структуры связанных фаз. [c.39]

    Истинный механизм процесса продолжает оставаться предметом спора. Некоторые исследователи считают, что противоион сильно адсорбируется на органической фазе, причем увеличение удерживания обусловлено в большей степени последовательным удерживанием заряженных ионов образца по ионообменному механизму, нежели удерживанием ионной пары. Экспериментальные исследования [113] свидетельствуют о том, что небольшие по размерам противоионы не адсорбируются в таком случае уравнение (63) применимо. Однако для значительно более крупных противоионов (ионы детергента в хроматографии поверхностно-активных веществ) удерживание происходит, и протекающий процесс, по существу, сходен с ионообменной хроматографией. Теоретическая дискуссия по вопросу механизма ион-парной хроматографии вылилась в пустословие, самое крупное в истории хроматографии за последнее время. Как правило, при выборе варианта хроматографии с обращенными фазами предпочтение отдается привитым фазам (более подробно об этом см. в работе [113]). [c.394]

    Наносить на поверхностно-пористые насадки жидкие неподвижные фазы следует чрезвычайно осторожно [24]. Используемые в высокоскоростной жидкостной хроматографии поверхностно-пористые насадки имеют удельную площадь поверхности носителя около 1—14 м г носителя. Однако удельная площадь поверхности самого пористого слоя превышает 100 м /г, обычно она равна 300 м /г. Твердое вещество с такой высокой удельной площадью поверхности активно. В зависимости от соотношения твердого вещества и жидкой неподвижной фазы меняется отношение емкостей к и относительное удерживание а для многих веществ [25, 26]. Кроме того, при использовании жидкой неподвижной фазы [c.247]


    В адсорбционной хроматографии следует рассматривать диффузию не только в подвижной фазе, но и на поверхности адсорбента, Вероятно, хотя и не доказано экспериментально, теплота адсорбции и геометрия адсорбента должны определять скорость поверхностной диффузии и, следовательно, влиять на размывание зоны. [c.71]

    Гидрофобными носителями служат различные полимерные вещества. Одним из лучших носителей этого типа считается полимер трифторхлорэтилена, известный под названием фторо-пласт-3 или Ке1-Р. Удачным носителем является та Кже полностью фторированный полимер фторопласт-4, или тефлон. В качестве гидрофобного носителя применяется также ацетилцеллюлоза. В принципе гидрофобным носителем может служить любой полимер, нерастворимый и не набухающий в органических растворителях и приготовленный в виде порошка с необходимой для удержания неподвижной фазы поверхностью. Подобно носителям в газожидкостной хроматографии, в ЖЖХ в качестве носителей могут применяться поверхностно-пористые носители, особенно с контролируемой поверхностной пористостью. [c.217]

    Руководства же к лабораторным работам по курсу адсорбции и поверхностных явлений пока отсутствуют, имеются только описания отдельных работ в практикумах по физической и коллоидной химии, а также по хроматографии. Такое руководство, на наш взгляд, необходимо. [c.3]

    С середины 60-х годов появился новый вариант жидкостной хроматографии, сочетающий быстроту газовой хроматографии с возможностью разделять нелетучие соединения. В этом варианте, называемом высокоскоростной жидкостной хроматографией, используются так называемые поверхностно-пористые насадки (сорбенты) в виде [c.79]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Предполагается, что читатель знаком с основами физической химии в рамках Курса физической химии , написанного коллективом авторов под редакцией Я. И. Герасимова (Химия, М., 1973, т. I), в частности, с гл. XVI—XIX и дополнением, посвященным поверхностным явлениям, адсорбции и газовой хроматографии. [c.3]

    В первой части описывается химия поверхности и адсорбционные свойства основных неорганических и органических адсорбентов (от таких одноатомных непористых и однородных, как графитированные сажи, до пористых органических полимеров), адсорбционное и химическое модифицирование поверхности адсорбентов, спектроскопическое исследование поверхностных соединений и адсорбционных комплексов. В этой части устанавливается качественная связь структуры молекул с адсорбционными свойствами, ярко проявляющаяся в хроматографии. [c.3]

    Для создания устойчивых по отношению к воздействию среды поверхностных химических соединений нужны прочные химические связи между поверхностью и веществами-модификаторами. Таким химическим модифицированием поверхности можно резко изменять ее адсорбционные свойства. Для многих процессов адсорбции с последующей регенерацией и особенно для адсорбционной хроматографии нужна такая поверхность, которая по отношению к молекулам в газе или растворе соответствовала бы девизу хроматографии схвати, подержи и отпусти . Этот девиз хроматографии отличается от девиза схвати и не отпускай , которым можно выразить требования к работе противогаза или шунта с адсорбентом, применяемого для экстракорпорального (вне организма) поглощения ядов из крови. В адсорбционной хроматографии адсорбция на поверхности адсорбента в хроматографической колонне должна сопровождаться десорбцией, полностью регенерирующей адсорбент в самом процессе хроматографии. Поэтому и взаимодействия молекул подвижной среды колонны (газа, жидкости) с неподвижным адсорбентом, заполняющим хроматографическую колонну, не должны быть слишком сильными. [c.7]


    Задачи конструирования поверхностных соединений на адсорбентах для хроматографии [c.89]

    В настоящее время в колоночной распределительной хроматографии применяются два основных типа носителей пористые и поверхностно-пористые. [c.64]

    Приготовление колонок. В распределительной хроматографии неподвижная фаза, нанесенная на пористый носитель, составляет от 10% до 50% (по массе), а для поверхностно-пористых— 1%—2%. [c.67]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    В справочнике с наибольшей полнотой приведены вырабаты-, ваемые промышленностью многих стран мира неорганические и органические сорбенты, носители, жидкие фазы и другие материалы для всех видов хроматографии — всего приблизительно 6000 марок и сортов. Даются состав, химические и физические свойства, основные количественные характеристики материалов, а также рекомендации по применению (с ссылками на специальную литературу). Описаны новые классы материалов для хроматографии поверхностно-пористые сорбенты и носители, сорбенты с привитыми фазами (типа щеток ), биоспецифические сорбенты для аффинной хроматографии. [c.2]

    Поверхностную активность асфальтенов можно измерить методом обращенной хроматографии, основанной на том, что асфальтены служат в качестве неподвижной фазы в газожидкостной колонке. Она охарактеризовывается путем измерения удерживаемых объемов ряда эталонных веществ. Так по коэффициенту взаимодействия [256] электроноакцепторная активность образца асфальтенов по отношению к основным реагентам  [c.286]

    Значение ГЛБ можно определить, не прибегая к исследованию поверхностных свойств системы. Например, Бехер и Беркмейер (1964) указывали, что хотя эффективность отделения из смеси в газожидкостной хроматографии зависит от полярности субстрата, можно определить ГЛБ непосредственно, используя ПАВ и пропуская масляную фазу через колонку. [c.135]

    Именно большое значение йиор, характерное для классической жидкостно-адсорбционной хроматографии, является одной из причин ее низкой эффективности. В современной высокоскоростной жидкостно-адсорбционной хроматографии применяются поверхностно-пористые адсорбенты. Их принципиальное отличие от обычных адсорбентов состоит в том, что на твердое, не обладающее пористостью сферическое зерно носителя нанесен тонкий слой адсорбента с высокой пористостью. Для увеличения плотности заполнения колонки зернам носителя придают сферическую форму и одинаковый для всех зерен диаметр (20—40 мкм). Толщина слоя пористого вещества составляет примерно 1 мкм. [c.74]

    Теоретические основы курса адсорбции и поверхностных явлений изложены Б ряде монографий и учебников. Среди них следует в первую очередь назвать следующие Курс физической химии под редакцией Я. И. Герасимова, т. 1, 1969 г. Газоадсорбционная хроматография А. В. Киселева и Я. И. Яшина, 1967 г. Адсорбция, удельная поверхность, пористость С. Грега и К. Синга, 1970 г. Адсорбция газов и паров С. Брунауэ-ра, т. 1, 1948 г. Физика и химия поверхностей Н. К. Адама, 1947 г., идр. [c.3]

    В жидкостной распределительной хроматографии используют два основных типа носителей пористые и поверхностнопористые. Пористые носители силикагель, диатомиты (хромосорб) и пористые стекла. Они имеют пористую структуру и большую площадь поверхности. Поверхностно-пористые носители состоят из частиц с непористой, непроницаемой сердцевиной и тонкой пористой оболочкой. При разделении на колонках с поверхностно-пористыми носителями даже при высоких скоростях подвижной фазы можно добиться высокой эффектипности колонки. Но эти носители дороги и имеют низкую емкость. [c.333]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]

    Адсорбционное модифицирование графитированных саж и кремнеземов с (успехом используют для получения адсорбентов с разной химией поверхности. Для этого поверхность адсорбента-носителя покрывают плотными монослоями сильно адсорбирующихся на нем молекул или макромолекул, содержащих разные функциональные группы. Таким образом можно значительно увеличить набор селективных адсорбентов для хроматографии и в результате увеличения однородности поверхности и блокировки тонких пор повысить эффективность колонн. При этом достигается не только нужная специфичность адсорбента, но и, благодаря экранированию модификатором силовых центров самого адсорбента-носителя, снижается общая энергия адсорбции, в особенности вклад в нее энергии неспецифических межмолек улярных взаимодействий. Это вызывается тем, что, в отличие от неорганического адсорбента-носителя, средняя поверхностная концентрация силовых центров (атомов, образующих молекулы модификатора) меньше, так как расстояния между молекулами модификатора даже в- плотном монослое определяются их вандерваальсовыми размерами. Уменьшение энергии адсорбции позволяет понизить температуру колонны при разделении данной смеси. [c.76]

    Для хроматографии молекул на основании их химического и геометрического строения и возможных изменений конформации весьма важно создание на поверхности адсорбентов рецепторных мест фиксации, способных проявлять различные виды межмолекулярных взаимодействий, (табл. 1.1). В лекции 1 показано, что для разделения множества структурных изомеров достаточно применить неспецифические атомарные адсорбенты с плоской поверхностью. В лекции 2 приведены примеры хроматографии близких по геометрии полярных молещул при дополнительном воздействии на такие молекулы электростатического поля ионных адсорбентов. Б лекциях 3 и 4 рассмотрено использование образования между молекулами и поверхностными соединениями водородных связей. В лекции 4 показано также, что адсорбенту можно придать электроноакцепторные свойства путем отложения на его поверхности адсорбционных слоев модифицирующих веществ, обладающих этими свойствами. Это улучшает разделение электронодонорных молекул. Однако адсорбционные модифицир ующие слои часто оказываются недостаточно термически стойкими для использования в газовой хроматографии при высоких температурах или нестойкими к воздействию растворителей (элюентов) в жидкостной хроматографии. Поэтому весьма важно использовать для связи модифицирующего вещества с поверхностью адсорбента также и более прочные химические связи. При этом надо стремиться достичь геометрического и химического соответствия поверхностных соединений и тех или [c.89]

    Нетрадиционно излагаются строение вещества, термодинамика и кинетика химических процессов, состояние вещества. Рассматриваются поверхностные явления, процессы переноса с акцентом на диффузию, электрическую проводимость, седиментацию и хроматографию. [c.2]

    Если отводить образовавшиеся про-8 дукты деструкции, то можно обнажить глубинные слои полимерного образца, т. е. испарять поверхностные слои материала, минуя его жидкое состояние. Наличие деструкции можно установить по изменению массы образца в процессе к йда й/м/у травления, изучением продуктов дест-методами газовой хроматографии или масс-спектроскопии. [c.112]

    В монографии впервые о отечественной литературе рассмотрены основы ионохроматографического анализа вод — лучшего современного метода оиределеиня анионов в растворах. Описаны последние достижения в развитии ионной хроматографии, существенно расширяющие ее возможности, такие новые системы подавления фонового сигнала, как детекторы 1[ сорбенты. Особое внимание уделено определению неорганических анионов. Обсуждаются способы определения органических веществ, главным образом кислотного характера. Приводятся методы определения металлов, в частности, описан разработанный авторами метод определения металлов в виде оксоанионов. Отдельно рассмотрен анализ вод различных типов — поверхностных пресных, сточных, морских, а также атмосферных осадков. [c.216]

    Этиленоксид — один из важнейших полупродуктов органического синтеза. Он используется в основном для производства эфиров этиленгликоля, этаноламинов, поверхностно-активных веществ, носителей для газо-жидкостной хроматографии. Наиболее важные направления использования этиленоксида приведены на рисунке 20. [c.171]

    Многие современные модели газовых хроматографов комплектуются специальными блоками (системами) точного задаь ия и (или) измерения расходов газа-носителя и вспомогательных газов. При отсутствии таких устройств объемную скорость газа-носителя приходится измерять с помощью мыльно-пленочных измерителей расходов газов при температуре окружающей среды. Рабочей жидкостью в этих измерителях чаще всего является водный раствор мыла или поверхностно-активного вещества. Поэтому при вычислении удерживаемых объемов следует использовать значение объемной скорости, исправленное на температуру колонки и давление водяного пара ири температуре измерения  [c.164]

    Колонки металлические (2 м X 3 мм), заполненные хроматоном N-AW (0,2—0,25 мм), модифицированным 0,5 % (по массе) поверхностно-активного вещества (например, полиэтиленгликольмонолаурата) и смоченным одной из следующих неподвижных фаз в количестве 20 % (по массе) 1) апиезон Ь 2) трикрезилфосфат 3) полиэтиленгликоль-1500 (ПЭГ-1500). Для размещения в термостате хроматографа всех названных колонок, образующих три параллельных канала разделения, прибор доукомплектовывают дополнительным блоком испарителя или выводят входной конец третьей колонки через отверстие в крышке термостата и оборудуют его устройством для наколоночного ввода пробы. В том и другом случаях для обеспечения работы газовой схемы с тремя параллельными колонками (обладающими примерно одинаковым гидродинамическим сопротивлением) на выходе одного из двух штатных каналов блока подготовки газа-носителя устанавливают тройник выходы колонок связывают с детектором через крестовину (рис. IV.8). [c.291]


Смотреть страницы где упоминается термин Хроматография поверхностная: [c.663]    [c.668]    [c.668]    [c.668]    [c.668]    [c.82]    [c.477]    [c.40]    [c.71]    [c.13]    [c.221]    [c.2]    [c.90]    [c.281]    [c.284]   
Хроматография на бумаге (1962) -- [ c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте