Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Простетические группы белков ферментов

    Известны и такие сочетания кофермента с белком, в которых связи между ними прочны и разделить кофермент и белок можно только с большим трудом. Тогда вместо термина кофермент применяют термин простетическая группа. Такие прочные связи обнаружены в ферментах, содержащих гел( — комплексное соединение железа (см. далее). [c.356]

    Более подробно выяснено значение витамина А в процессе свето-ощущения. В этом важном физиологическом процессе большую роль играет особый хромолипопротеин—сложный белок родопсин, или зрительный пурпур, являющийся основным светочувствительным пигментом сетчатки, в частности палочек, занимающих ее периферическую часть. Установлено, что родопсин состоит из липопротеина опсина и простетической группы, представленной альдегидом витамина А (ретиналь) связь между ними осуществляется через альдегидную группу витамина и свободную -КН,-группу лизина молекулы белка с образованием шиффова основания. На свету родопсин расщепляется на белок опсин и ретиналь последний подвергается серии конформационных изменений и превращению в транс-форму. С этими превращениями каким-то образом связана трансформация энергии световых лучей в зрительное возбуждение—процесс, молекулярный механизм которого до сих пор остается загадкой. В темноте происходит обратный процесс—синтез родопсина, требующий наличия активной формы альдегида—11-г<ис-ретиналя, который может синтезироваться из -ретинола, или транс-ретиналя, или транс-формы витамина А при участии двух специфических ферментов—дегидрогеназы и изомеразы. Более подробно цикл превращений родопсина в сетчатке глаза на свету и в темноте можно представить в виде схемы  [c.211]


    Что такое фермент Простетическая группа Сложный белок Кофермент Субстрат  [c.427]

    Предложенная Н. В. Рилем модель действия различных окис-лительно-восстановительных систем основана на передаче (на расстояние) через белковую молекулу электрона с компенсирующей отДачей или приемом протона из водной фазы. Ныне принятая схема действия дегидраз основана на известных фактах диссоциации фермента на простетическую группу и специфический белок и обратимого окислительно-восстановительного превращения просте- [c.356]

    Простетическая группа (небелковый компонент) двухкомпонентных ферментов называется коферментом (коэнзимом). Белок его называется апоферментом. Коферментами чаще всего являются витамины, их дериваты, т. е. производные, или группировки, содержащие металл. Так, коферментом дегидрогеназы служит никотинамидадениндинуклеотид, в который входит никотинамид. В ферменте декарбоксилазе коферментом является фосфорилированный тиамин. [c.6]

    Большое значение как для установления структуры, так и для выяснения биохимической роли рибофлавина имело наблюдение, показавшее, что окисление восстановленного НАДФ катализируется старым желтым ферментом . При обработке метанолом фермент разделялся на бесцветный белок и не содержащий белка пигмент, близкий по строению к рибофлавину. Теорелл показал, что простетической группой желтого фермента является не сам рибофлавин, но рибофлавин-5 -фосфат. Это вещество обычно называется рибофла-винмононуклеотидом (ФМН) — название, строго говоря, не совсем точное, так как основание и сахар соединены не глюкозидной связью. [c.231]

    В других окислительных коферментах имеются иные, чем изоаллоксазиновая, восстанавливающиеся группы. Простейший опыт, свидетельствующий о том, что ФАД является специфическим коферментом глюко-зооксидазы, заключается в следующем если бы отщеплением кофермента от фермента можно было получить нативный неактивный белок, то возвращение активности при добавлении к этому белку ФАД говорило бы о специфичности этого кофермента. Но стандартный метод непригоден в данном случае, так как белковая часть глюкозооксидазы денатурируется нри всех операциях, в которых отщепляется кофермент. Установлено, что ФАД является простетической группой другого фермента — оксидазы /)-аминокислот, в которой неактивный белок может быть выделен в нативном состоянии. При кипячении с водой белковая часть глюкозооксидазы денатурируется и освобождается кофермент. Добавление полученного раствора к раствору нативного белка оксидазы Д-аминокислот приводит к восстановлению активности этого фермента, что является доказательством того, что ФАД — простетическая группа для обоих ферментов. [c.710]


    В ранних работах по сульфитоксидазе имеется некоторая путаница. Сообщения о прямой оксидазной активности и наличии гемовой простетической группы в ферменте из печени, а также о способности бактериальной сульфитоксидазы переносить электроны на кислород то подтверждались 101—103], то опровергались [104— 106]. Позже ситуация в значительной мере прояснилась [109], однако детали механизма окисления сульфита молекулярным кислородом все еще неизвестны. Сульфитоксидаза из бычьей печени очищена до 75%-ной однородности [96]. Этот белок способен передавать электроны от сульфита на такие одноэлектронные акцепторы, как цитохром с и феррицианид, и на такие двухэлектронные акцепторы, как молекулярный кислород, 2,6-дихлорфенол, индофенол и метиле- [c.297]

    Название кофермент (коэнзим) иногда употребляют для протеи-ноидного фермента, необходимого для активации другого фермента, но часто коферментом называют простетическую группу, без которой белок неактивен. Донорный фермент требует акцепторного фермента со специфическим окислительно-восстановительным потенциалом и не может функционировать с другим акцептором даже в тех случаях, когда простетические группы акцепто])ов очень близки по строению. Специфическая единица в простетической группе в каждом акцепторном ферменте способна принять два атома водорода. В ряде случаев этой единицей является никотинамидная группа (никотинамид — незаменимый компонент пищи многих животных). [c.718]

    Эти простетические группы также, как и их способы соединения с белками, могут быть очень различными. Так, в фосфопротеидах собственно белок соединен с фосфорной ли пирофосфорной кислотами эфирообразно через гидроксильные группы оксиаминокислот. В хромопротеидах простетической группой является красящее вещество гем, представляющее собою соединение порфиринового ряда, содержащее металл. В гемоглобине (красящем веществе крови), который является переносчиком кислорода у позвоночных, гем содержит железо в гемоцианине, содержащемся в крови и гемолимфе некоторых беспозвоночных животных, гем содержит медь. Железо содержат и ряд других представителей этой обширной и важной группы белков, например, цитохром С — катализатор клеточного дыхания, каталаза и пероксидаза — окислительные ферменты и т. д. Различен также и характер связи простетической группы с белком в хромопротеидах. Согласно современным представлениям, белок (глобин) в гемоглобине связан с гемом водородными связями, возникающими между атомом железа гема и имидазольным кольцом гистидиновых остатков в белке. В цитохроме связующим звеном, по-видимому, является тиоэфирная группа (см. рис. 10). [c.533]

    Следует подчеркнуть, однако, что значительно больший удельный вес имеет посттрансляционная химическая модификация белков, затрагивающая радикалы отдельных аминокислот. Одной из таких существенных модификаций является ковалентное присоединение простетической группы к молекуле белка. Например, только после присоединения пиридоксальфосфата к -аминогруппе остатка лизина белковой части—апо-ферменту—образуется биологически активная трехмерная конфигурация аминотрансфераз, катализирующих реакции трансаминирования аминокислот. Некоторые белки подвергаются гликозилированию, присоединяя олигосахаридные остатки (образование гликопротеинов), и обеспечивают тем самым доставку белков к клеткам-мишеням. Широко представлены химические модификации белков в результате реакции гидроксилирования остатков пролина, лизина (при формировании молекул коллагена), реакции метилирования (остатки лизина, глутамата), ацети-лирования ряда N-концевых аминокислот, реакции карбоксилирования остатков глутамата и аспартата ряда белков (добавление экстра-карбоксильной группы). В частности, протромбин (белок свертывающей [c.532]

    Примером двухкомпонентного фермента является карбоксилаза, катализирующая расщепление пировиноградной кислоты на уксусный альдегид и углекислоту. Простетической группой ее является витамин В[ в соединении с двумя молекулами фосфорной кислоты. Коллоидным носителем — специфический белок. [c.520]

    Образование, вернее удлинение, цепи жирной кислоты может стартовать только после того, как обе сульфгидрильные группы синтазной системы войдут во взаимодействие с ацильными группами. Условно это можно представить в следующем виде. Комплекс 7 ферментов синтазной системы представим буквами ЕФ и центральный ацилпереносящий белок вместе с простетической группой АПБ-Ф-8Н. В комплексе ХФ есть также свободная - 8Н ЕФ-цистеин-8Н. [c.305]

    Небелковые простетические группы, определяющие активность многи.ч ферментов, могут быть обратимо отделены от белкового компонента молекулы фермента. Дейл [86] нашел, что простетическая группа оксидазы -аминокислот—аллоксазин-адениндинуклеотид — инактивируется так же легко, как и белок, если их облучать отдельно. При смешивании обоих компонентов инактивация, ло-видимому, аддитивна. При облучении же растворов интактного фермента белок защищает простетическукэ [c.243]

    Нуклеопротеидами, тромбоциты содержат липопротеид про-тромбокиназу, в состав простетической группы которого входит кефалин. Содержание гемоглобина в эритроцитах доходит до 40%. В цельной крови взрослого человека содержание гемоглобина составляет 12—14%, что соответствует 75—85% по гемометру Сали Ч Кроме гемоглобина, в эритроцитах содержится сложный белок, содержащий медь, называемый купреином, и фермент карбоангидраза, в состав которого входит цинк. Из небелковых органических веществ в эритроцитах содержится в среднем 350 мг% лецитина, 150 мг% холестерина и др. Содержание глюкозы в эритроцитах меньше, чем в плазме, и составляет 60—70 мг%. Из минеральных веществ в эритроцитах содержится особенно много калия (около 470 мг%) и железа (около 105 мг%) и очень мало натрия (около 80 мг%). [c.226]


    Многие инвариантные аминокислотные остатки гомологичньгх белков, т. е. остатки, присутствующие всегда в определенных положениях полипептидных цепей независимо от вида организма, из которого получен белок, по всей вероятности, занимают наиболее важные в структурном отношении места в полипептидной цепи. Одни из инвариантных остатков встречаются вблизи изгибов цепи или в самих изгибах, тогда как другие, например остатки цистина, находятся в тех местах цепи, где между близко расположенными петлями третичной структуры возникают поперечные связи. Ряд инвариантных аминокислотных остатков занимает строго определенное положение в каталитических центрах ферментов или в местах связывания простетических групп, например гемогруппы в цитохроме с. [c.196]

    В 1927 г. Варбург пришел к выводу, что во всех клетках находится особый термолабильный ж елезосо дер жащий катализатор, активирующий, как думал Варбург, кислород воздуха. Этот катализатор был назван дыхательным ферментом . Изучение его спектра поглощения показало, что этот фермент по своему строению весьма близок к гемоглобину он содержит белок и прочно связанную с ним простетическую группу —гем, в состав которой входит атом железа. Дыхательный фермент получил впоследствии название цитохромоксидаза , так как его функция, как было позднее установлено, сводится к катализу реакции между кислородом и восстановленной формой одного из цитохромов. Никаких других окислительных реакций этот фермент не катализирует. [c.232]

    Пепсин принадлежит к ферментам, имеющим в своем составе только белок. В пепсине не удалось обнаружить небелковую коферментную (простетическую) группу. Поэтому считают, что пепсин является простым белком. Не исключена, однако, возможность, что простетической группой пепсина служит какой-нибудь пептид, который не удалось еще отделить от цельной белковой молекулы. [c.312]

    Установлено, что в одних случаях простетические группы трудно отделимы и в молекуле фермента связаны с белком весьма прочно, в других же случаях, напротив, они могут быть легко отделены от белковой части, например, путем диализа. Иногда связь белка с простетической группой в молекуле фермента настолько непрочна, что в растворе фермента устанавливается подвижное равновесие между недиссоциированными молекулами фермента, с одной стороны, и белковой и простетической группами — с другой фермент 5 белок + простетическая группа. [c.128]

    Роль переходных металлов в жизнедеятельности организмов в основном опеределяется их каталитическими свойствами. Многие ферменты представляют собой белок как таковой (т. е. являются полипептидами), тогда как другие состоят из белка (называемого в этом случае апоферментом ) и одной или более малых молекул или ионов (кофактор, кофермент или простетическая группа), которые вместе образуют весь фермент или холофермент. Кофермент может представлять собой органическую молекулу, например флавин, пиридоксаль, пнридиннуклеотид и др., соединенную с белком ковалентной связью, водородными связями или за счет вандерваальсовых взаимодействий. Кофактор может быть простым ионом металла, например ионом меди, или комплексом металла с одним или несколькими лигандами, например железопорфирины, кобальт-корриноиды. Если с ионом металла координируется один или несколько анионов аминокислот, то лигандом может служить сам белок, хотя это лиганд необычного типа. Очевидно, такие металлоферменты можно рассматривать как особую группу ферментов или как особую группу комплексов металлов и сопоставлять каталитическую активность ферментов, содержащих и не содержащих металл, или каталитическую активность комплексов переходного металла с белком и без белка. В рамках этого обзора мы не будем рассматривать металлоферменты, в которых ион металла выступает главным образом как льюисовая кислота (как в некоторых гидролитических ферментах [59]). Предметом обзора являются такие металлопротеины, которые сами претерпевают определенные (например, окислительно-восстановительные) превращения в ходе каталитического процесса и в которых в качестве лигандов принимают участие некоторые специфические компоненты, например молекулярный кислород, которые характерны для комплексов переходных металлов. [c.133]

    Мы видим огромное разнообразие возможностей, возникших вследствие лабилизации аминокислот при присоединении к ниридо-ксальфосфату. Однако остается неясным, почему реакция в каждом конкретном случае направляется по одному определенному путн, почему избирается только одна возможность из множества. Этот вопрос особенно остро стоит в рассмотренном примере реакций аминокислот, где число альтернативных возможностей очень велико. Но тот же самый вопрос может быть поставлен и в случае металлоэнзимов и для действия эстераз, где активный центр составлен из боковых групп самих аминокислот. Из факта ослабления некоторых химических связей еще не следует выбор реакционного пути. В ферментативном катализе должны быть еще факторы, приводящие к чрезвычайно определенному выбору направления химического превращения. Несомненно, главную роль здесь играет белок (так как простетическая группа универсальна для многих ферментов). [c.172]

    Приведенная выше структурная формула хлорофилла а рассматривается только как простетическая группа сложного фотофермента, включающего. в себя белковолипидный компонент. До настоящего времени не выделен специфический белок, образующий с хлорофиллом соединение типа фермента. Неизвестно также стехиометрическое соотношение между простетической группой и молекулой белка. [c.167]

    Таким образом, теория строения белков как полипептидов, обоснованная Э. Фишером, стала прочным фундаментом исследования белков. Неясным оставалось, как при столь однообразном строении различных белков объяснить их весьма разнообразные физические и биохимические свойства. В 20-х годах XX века на примерах каучука, целлюлозы, крахмала были развиты представления о высокомолекулярных соединениях. В то же время были разработаны методы определения молекулярного веса высокомолекулярных соединений и, в частности, белков. Ранее о минимальном молекулярном весе протеидов судили по содержанию в них простетических групп (или каких-либо специфических атомов этих групп, например атома железа в гемоглобине), исходя из предположения, что одна простетическая группа содержится в одной молекуле протеида. Молекулярные веса и таким путем получились огромные, например для гемоглобина 68 000. Применение осмометри-ческого метода определения молекулярного веса (Серенсен, 1917 г.) и особенно разработка ультрацентри(1)угальпого метода (Сведберг, 1926 г.) позволили систематически исследовать молекулярные веса растворимых белков. Оказалось, что их молекулярные веса располагаются в широком интервале величин от 10 000 и ниже для ряда ферментов и гормонов (6500 для инсулина) до 6 600 000 (гемоцианин улитки) и даже до 320 000 000 (белок вируса гриппа). Если принять средний молекулярный вес аминокислотного остатка, входящего в полипептидную цепь белка, равным 115, то окажется, что число аминокислотных остатков в молекулах белков колеблется от нескольких десятков до немногих миллионов. Таким образом, уже по молекулярным весам белки представляют величайшее разнообразие. Простейшие из них вряд ли могут быть отнесены к высокомолекулярным соединениям, между тем как некоторые представляются одними из высокомолекулярных соединений с наиболее громоздкими молекулами. Существеннейшим отличием белков как высокомолекулярных соединений от таких синтетических полимеров, как капрон, полистирол, и таких природных высокомолекулярных соединений, как каучук, целлюлоза, крахмал, является разнообразие элементарных звеньев ( мономеров ), из которых построены белки. Взамен одного мономера (например, остатка ю-аминокапроно-вой кислоты или глюкозы, стирола, изопрена) в белки входит более 20 разных аминокислотных остатков. Это было и вдохновляющим и обескураживающим обстоятельством. Если молекула состоит всего из 20 разных аминокислотных остатков, для нее возможно [c.655]

    Ферменты представляют собой вещества или чисто белковой структуры, или протеиды — белки, связанные с небелковой простетической группой. Число уже известных ферментов очень велико. Считают, что одна клетка бактерии использует до 1000 разных ферментов. Однако лишь для немногих установлено строение. Примерами чисто белковых ферментов могут служить протеолитические ферменты пищеварения, такие, как пепсин и трипсин. Известны случаи, когда один и тот же белок несет в организме и структурную и ферментативную функцию. Примером служит белок мышц миозин, каталитически разлагающий аденозинтрифосфат— реакция, в данном случае дающая энергию сокращения мышцы (В. А. Энгельгардт, М. Н. Любимова). [c.698]

    Биотин (витамин Н) является простетической группой фермента ацетил-КоА-карбоксилазы, которая участвует в биосинтезе жирных кислот. Белок авидин, который находится в куриных яйцах, способен связываться с биотином и ингибировать этот фермент. [c.94]

    Многие ферменты двухкомпонентны, они способны диссоциировать на белок и низкомолекулярные компоненты (простетическую группу, кофермент), без которых ферД1ентный белок недеятелен, особенно при биохимических превращениях, например при брожении, гликолизе, клеточном дыхании и т. д. Максимальная скорость превращений достигается при введении в систему недостающих в ней коферментов или металлов, а также некоторых соединений, которые участвуют в промежуточных реакциях при образовании субстратов, в переносе водорода, фосфатных, аминных и других групп. Так, например, активация углеводов при брожении под действием фосфата или АТФ состоит в образовании гексо офосфорных эфиров. Активация уксусной кислоты в клеточном обмене заключается в ее превращении в аистг л-КоА [c.244]

    Ферменты этой группы в основном представляют либо очень прочный комплекс специфического белка и металла, как это имеет место во многих медьсодержащих белках, либо столь же прочное комплексное соединение белка, металла и простетической группы. Такую сложную ферментную единицу мы имеем в случае порфириновых и некоторых других железо- и медьсодержащих катализаторов. Оба металла могут и не являться конституционными составляющими ферментов, а быть неспецифическими активаторами биохимических процессов, находясь в активном центре комплекса металл—фермент (белок) в последнем случае они выполняют ту же роль, что и марганец, кобальт, магний, цинк — металлы-катализаторы реакций, осуществляющихся с участием разнообразных групп ферментов. [c.146]

    Сера. Белок и простетические группы (-5Н) некоторых ферментов и коэнзима А содержат серу без нее в среде не происходит полноценного синтеза белка, нарушаются процессы обмена. Обычно источниками серы в среде служат неорганические сульфаты, поэтому для включения серы в органическую молекулу, входящую в состав белка или витаминов, сульфат должен быть восстановлен. [c.75]

    Основой любого фермента является белок, представляющий собой компактную конструкцию из одной или нескольких полипептидных цепей, ковалентно связанных (сшитых) дисульфид-ными мостиками. Помимо белка ферменты иногда мо1ут содержать и небелковые компоненты простетические группы неорганической и органической природы, липиды (в липопротеидах) и углеводы (в гликопротеидах). Конечно, в общем случае химические методы иммобилизации нацелены на модификацию функциональных групп в белковой части молекулы фермента. Однако при выборе процедуры иммобилизации для конкретного фермента целесообразно учитывать и специфические особенности строения его молекулы. В этой связи укажем на хорошо известный и яркий пример ковалентной иммобилизации гликопротеидов. Относительно простым методом — окислением перйодатом натрия в мягких условиях — в полисахаридную часть фермента вводятся альдегидные группы, посредством которых на следующем этапе и осуществляется химическое взаимодействие с носителями или сшивающими агентами, содержащими аминогруппы (образованием азометиновых связей, оснований Шиффа). [c.82]

    Ферменты подразделяются на одно- и двухкомпонентные. Первые состоят только из молекул белка, вторые — из белковой части, получившей название апофермента, и соединения небелковой природы, называемой простетической группой, В двухкомпонентных ферментах белок-носитель называют [c.68]

    Еще два подхода к синтезу полимер-белковых конъюгатов не имеют общего характера, но обладают рядом достоинств. Если простетическая группа сложного белка может быть выделена, связана с полимером, а затем вновь соединена с апобел-ком, то можно задать число прививаемых полимерных цепей и место их прививки. Этот подход был реализован на примере гемоглобина [13]. Наконец, белок, иммобилизованный на нерастворимом деградирующем носителе, может быть подвергнут солюбилизации при действии ферментов, например декстраназы в случае Сефадекса [14] или алифатических аминов в случае ди-альдегидсефадекса [15]. Возможность проведения синтеза в твердой фазе заметно упрощает получение водорастворимых конъюгатов, но их структуру и ММР регулировать трудно. Этот подход был использован для создания тромболитических конъюгатов, растворяющихся in vivo (см. гл. 6). [c.165]


Смотреть страницы где упоминается термин Простетические группы белков ферментов: [c.726]    [c.426]    [c.500]    [c.283]    [c.346]    [c.800]    [c.649]    [c.122]    [c.403]    [c.437]    [c.223]    [c.425]    [c.65]    [c.31]    [c.351]    [c.229]   
Биохимия Издание 2 (1962) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Простетическая группа

Простетические группы ферментов

Ферменты белков



© 2025 chem21.info Реклама на сайте