Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции химические и температура

Рис. 1-3. Зависимость констант равновесия различных химических реакций от температуры Рис. 1-3. <a href="/info/666659">Зависимость констант равновесия</a> <a href="/info/384314">различных химических</a> реакций от температуры

    Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является движущей силой химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом к точке с низким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. [c.113]

    Таким образом, зависимость теплоты химической реакции от температуры выражается следующими уравнениями (уравнения Кирхгоффа)  [c.72]

    При повышении температуры системы, в которой возможна химическая реакция (системе, находящейся в равновесии, сообщается теплота), согласно принципу Ле Шателье — Брауна усиливается процесс, сопровождающийся поглощением теплоты, т. е. равновесие смещается в сторону эндотермической реакции. Влияние температуры будет сказываться на константе равновесия химической реакции тем сильнее, чем больше по абсолютной величине тепловой эффект. Поэтому при протекании двух параллельных реакций, например [c.256]

    Отсюда следует, что и скорость электрохимической реакции зависит НС только от температуры, активностей ее участников и катализатора, т. е. от тех же факторов, которые определяют скорость химической реакции, но и от потенциала на границе раздела фаз различной проводимости. Варьирование потенциала границы, при сохранении постоянными концентраций участников электрохимической реакции и температуры, позволяет в десятки, сотни и тысячи раз менять скорость реакции, а в ряде случаев и природу ее продуктов. Это делает электрохимические реакции более управ- [c.11]

    Наличие зависимости скорости тепловыделения от скорости химической реакции, а скорости химической реакции от температуры приводит к возникновению в неизотермическом реакторе положительной обратной связи, которая может вызвать неустойчивость процесса. Поэтому одним из этапов разработки реакторного узла является исследование устойчивости стационарного состояния [11, 12]. [c.171]

    Формула Нернста может быть использована для оценки порядка величины константы химического равновесия Кр, когда известен только тепловой эффект реакции при температуре окружающей среды (например, при стандартном состоянии реагентов). После принятия некоторых упрощений Нернст получил формулу  [c.158]


    Следует подчеркнуть, что зависимость типа а характерна для простых реакций, другие типы температурной зависимости—для сложных реакций или реакций, на протекание которых влияет скорость физических процессов. Сильная зависимость скорости химических реакций от температуры была замечена уже давно и учитывалась соотношением г=аТ ", где т изменялось от 6 до 8. Позднее (в 1878 г.) Гуд предложил уравнение г=ае 1Т. В 1889 г. Аррениус дал рациональное объяснение (которое до сих пор является общепринятым) к уравнению скорости простого экспоненциального вида. Пытаясь объяснить влияние температуры на скорость инверсии тростникового сахара в присутствии кислот, он высказал предположение, что непрерывно образующаяся тауто-мерная форма сахара более чувствительна к воздействию кислот, чем нормальная форма. Таутомерная форма имеет определенную теплоту образования и находится в равновесии с нормальной формой. К этому равновесию Аррениус применил термодинамическое уравнение  [c.31]

    И общем случае скорость химической реакции с повышением температуры увеличивается. Опыт показывает, что при повышении температуры на 10° С скорость реакции возрастает в 2—4 раза. Для характеристики зависимости скорости химической реакции от температуры был введен температурный коэффициент скорости реакции у. Этот коэффициент является отношением константы скорости химической реакции при температуре 74-10° к константе скорости при температуре Т, т. е. [c.41]

    Существуют два подхода к теоретическому рассмотрению процесса самовоспламенения. Первый связывает процесс самовоспламенения с превышением скорости выделения тепла в результате химических реакций над скоростью отвода тепла из смеси. В этом случае благодаря экспоненциальной зависимости скорости химической реакции от температуры происходит самоускорение химических реакций, проявляющееся в виде взрыва. Подобное самовоспламенение принято называть тепловым взрывом. [c.128]

    В процессе образования граничные пленки сначала физически адсорбируются на поверхности трения. Энергия связи таких пленок с поверхностью относительно невелика. Во многих случаях физически адсорбированные пленки вступают в химическую реакцию с поверхностью трения с образованием новой субстанции — хемосорбированных пленок, характеризующихся высокими энергиями связи. Существенную роль при образовании пленок в результате адсорбции или химической реакции играет температура. При ее повышении рост пленок за счет физической адсорбции уменьшается, скорость образования химически связанных пленок увеличивается. Температуру, при которой разрушается адсорбированная пленка, можно рассматривать как меру прочности этой пленки. Эта температура называется критической температурой перехода к сухому трению [249]. Действительные температуры зависят от режима [c.238]

    Температура сильно влияет на скорость химических реакций. Наблюдается несколько характерных типов зависимости скорости реакции от температуры (рис. 1-1). [c.30]

    Ввиду изменения, которое претерпевает в реакторе как состав реакционной смеси, так и физико-химические свойства отдельных компонентов, уравнение баланса следует составлять для каждого компонента в отдельности. Между материальным и тепловым балансами существует тесная связь. Оба они зависят от скорости реакции. Это обстоятельство, так же как и зависимость скорости реакции от температуры, зачастую довольно сложная, затрудняет решение соответствующих уравнений. В таких случаях вводятся различные упрощения. Вместо вектора линейной скорости, меняющегося от точки к точке при турбулентном режиме, вводится его -> [c.151]

    Уравнение (1.76) устанавливает связь между скоростью химической реакции п температурой. Его интегрирование приводит к фундаментальному выражению для константы скорости химической реакции [c.42]

    Пример 7.4. Сделать ориентировочный выбор стандартного роторного пленочного аппарата для проведения газожидкостной химической реакции А В С. Производительность аппарата по жидкости с реагирующим компонентом Л <3д = 0,28 кг/с, начальная концентрация = 8 кмоль/м конечная концентрация Хя = 0,5 кмоль/м длительность реакции при температуре р = 110°С составляет Тр = 10 с, удельная теплота экзотермической реакции = +4,8-10 Дж/кмоль. [c.217]

    Химическая реакция при температуре около 500° С и давлении от [c.256]

    Основными параметрами, влияющими на равновесие химических реакций, являются температура, давление и концентрация реагирующих веществ. Эти параметры используются на практике для сдвига равновесия в желаемую сторону, т. е. для регулирования равновесной степени превращения. [c.20]

    Жидкие отходы подлежат обезвоживанию с последующим нагревом органического сухого остатка до температуры начала реакции, химическим превращением (окисление, разложение), затем плавление.м неорганических веществ и охлаждением плавов до температуры, при которой осуществляется выгрузка. Процесс проводят в камерных циклонных печах. [c.48]


    Диаграммы связи химических реакций. Химическая активность компонентов ФХС приводит (при прочих равных условиях) к изменению ее энергетического состояния. Для характеристики энергетического состояния физико-химических систем применяются понятия термодинамических потенциалов [3—5]. В качестве термодинамического потенциала ФХС, в которой протекают химические реакции, удобно использовать свободную энергию Гиббса G. Например, для системы с одной химической реакцией при постоянных давлениях Р и температуре Т дифференциал свободной энергии Гиббса принимает вид [c.118]

    Для оценки эффективности возможных путей воздействия на скорость гетерогенной реакции очень важно знать, какая из стадий ее является в данных условиях наиболее медленной и, следовательно, определяющей скорость реакции в целом. В одних случаях этой стадией являются процессы диффузии того или другого компонента реакции из объема фазы к поверхности раздела или наоборот. В других —само химическое взаимодействие на поверхности раздела. Различие между этими случаями наиболее сильно проявляется в зависимости скорости реакции от температуры. Скорость диффузионных процессов изменяется с температурой сравнительно слабо (примерно на 1—3% на градус), а скорость химического взаимодействия—значительно сильнее (примерно на 10—30% на градус, в зависимости от энергии активации). [c.489]

    Зависимость теплового эффекта химической реакции от температуры выража< тся уравнением [c.47]

    Экспоненциальный закон изменения скорости химической реакции с температурой могкет быть получен также теоретическим путем. При этом для константы скорости из теории столкновений получается формула [c.11]

    В предлагаемой работе методами качественного анализа изучается явление распространения фронта экзотермической реакции по неподвижному слою катализатора, определяются оценки основных характеристик фронта реакции максимальной температуры, скорости распространения и ширины зоны химической реакции. [c.27]

    Приведенная выше оценка зависимости скорости химической реакции от температуры носит весьма приближенный характер и имеет малую практическую ценность. Более обоснованную зависимость константы скорости химической реакции от температуры можно получить с помощью уравнения изохоры или изобары химической реакции. Без индексов, характеризующих условия протекания процесса, уравнения изохоры и изобары запишутся одинаково  [c.42]

    Зависимость скорости химической реакции от температуры является хорошо известным экспериментальным фактом. Чаще всего скорость реакции растет с повышением температуры, причем в координатах InA —1/Т экспериментальные данные обычно ложатся на прямую линию в соответствии с законом Аррениуса [c.12]

    К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Он основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    В элементарных стадиях химической реакции повышение температуры сопровождается возрастанием скорости реакции. Понижение скорости реакции с повышением температуры встречается крайне редко и всегда является суммарным результатом для сложной реакции. [c.528]

    Зависимость теплоты реакции от температуры. Стандартная теплота реакции, которую мы рассматривали выше, представляет собой теплоту, выделяемую или поглощенную системой в результате данного химического взаимодействия при условии, если начальные и конечные продукты реакции приведены к одной и той же температуре (20° С). Однако в производственной практике реакции, в зависимости от их типа, протекают при разных температурных условиях, а не только при 20° С. Поэтому в практике технологических расчетов величины тепловых эффектов реакций обычно подсчитывают при температурах промышленного осуществления этих реакций. Следует при этом отметить, что тепловой эффект почти любой реакции в той или иной мере зависит от температуры, а многие реакции обладают довольтю высоким температурным коэффициентом. [c.113]

    Таким образом, зависимость скорости химической реакции от температуры характеризуется двумя постоянными предэкспонен-циальным множителем и энергией активации Е. Чем выще значение Е, тем меньше скорость реакции, если предположить, что [c.215]

    Приведенные в таблице результаты характерны для явления двухстадийного самовоспламенения с двумя отдельными индукционными периодами, которые мы обозначим и Индукционный период (от начала реакции до появления холодного пламени) примерно равен8,2 сек., а индукционный период Та (от появления холодного пламени до наступления взрыва) равен приблизительно 1,01 сек. Мы обозначим эти понятия как период и период Тз. Первый период заканчивается появлением холодного пламени, а второй — появлением горячего пламени, если давление и температура выше критических. В период т , весьма вероятно, имеют место реакции разветвления цепи, а холодные пламена являются по своей природе взрывами, происходящими в результате такого разветвления [18] с той разницей, что взрывная реакция прекращается до выделения боль шей части запаса энтальпии в системе. В период Та происходят реакции химически измененной остаточной смеси после прекращения реакций разветвления цепи. На низкотемпературной стороне полуострова холодного пламени (рис. 2) вся реакция до наступления взрыва происходит почти полностью в период Т1 и в соответствии с кинетическими данными Преттра, Айвазова и Неймана является самоускоряющейся. На высокотемпературной стороне полуострова холодного пламени период развит слабо, и согласно данным Норриша и Ри [33] обычно реакция вне области взрыва подобна реакциям метана. [c.252]

    Кинетическая м диффузионная область. Очень важно правильно определить, протекает процесс в диффузионной области или кинетической, т. е. что является определяющей—скорость массопередачи или скорость химической реакции. Основными переменными, позволяющими это oбнapyжиtь, служат скорость потока и температура. Уравнение (VI, 2) показывает, что скорость массопередачи почти прямо пропорциональна скорости потока. С другой стороны, такое изменение рабочих условий совершенно не сказывается на скорости химической реакции. Влияние температуры на массопередачу выражено только в изменении физических свойств веществ в критериях подобия. Однако суммарное влияние температуры на скорость массопередачи весьма незначитель- [c.181]

    Скорость химических реакций с повышением температуры резко растет. Для гетерогенных реакций температурный коэффициент скорости обычно ниже, чем для гомогенных, так как при этом накладывается влияние других факторов, и наиболее медленной стадией процесса является не сама химическая реакция, а процессы диффузии, адсорбции и т. и. Зависимость скорости гомогенной реакции от температуры приближенно описывается эмииргшеским правилом Вант-Гоффа нри нагревании на 10 констаита скорости увеличивается в два-четыре раза, т. е. [c.338]

    Следовательно, как отмечал Уике [28], существует не два, а три в какой-то степени различных температурных режима с переходными зонами между ними. В первом режиме, при котором скорость процесса лимитируется химической реакцией, коэффициент эффективности близок к единице и зависимость наблюдаемой скорости реакции от температуры носит экспоненциальный характер. Второй режим характеризуется лимитированием скорости процесса диффузией через поры. Уике считает этот режим не совсем установившимся за исключением случая температуры, при которой критерий Тиле становптся достаточно большим, причем большим настолько, что соблюдается обрат- [c.42]

    Все термохимические процессы сопровождаются потреблениедг или выделением тепла и поэтому без подвода или отвода тепла невозможно проведение процесса. Скорость многих реакций зависит от условий теплопередачи и температуры, при которой они проводятся. Так с повышением температуры скорость возрастает и лишь у некоторых многостадийных реакций уменьшается. Температурная зависимость скорости реакции в основном определяется изменением константы скорости реакции. Зависимость скорости реакции от температуры, выраженная графически, дает круто поднимающуюся по экспоненциальному закону кривую. Зависимость скорости химической реакции от температуры предложена Аррениусом и имеет следующий вид  [c.9]

    Скорость химической реакции существенно меняется с изменением температуры. С повышением температуры скорость растет и лишь у некоторых многостадийных реакций уменьшается. Температурная зависимость скорости реакции учитывается в основном константой скорости реакции. Зависимость константы скорости реакции от температуры определяется уравнением Аррзниуса. [c.22]

    Вершины ДГХП типа а.еЛ, которые соответствуют конечным соединениям, полученным в результате данной л химической реакции, имеют входящие ветви, инцидентные вершине г.е/ . Вершина г,е/ также символизирует запись различных возможных условий проведения реакций (растворитель, температура, давление, катализатор и т. п.) и соответствующих значений выхода реакций. Дугам ДГХП могут быть поставлены в соответствие некоторые числа, показывающие сколько одинаковых молекул данного исходного (или конечного) соединения вступает (или получается) в реакции. [c.189]

    Зависимость скорости химической реакции от температуры выражается константой скорости реакции, включеыной в кинетическое уравнение. [c.31]

    И исполь уется для расчета тешювогч) )ффсма химической реакции при температуре Т в ужом температурном интервале. [c.18]

    Зависимость константы равновесия химической реакции от температуры при Р = onst описывается уравнением изобары химической реакции  [c.13]

    Для того чтобы тепловой фронт не вышел из слоя, предлагается периодически изменять направление подачи смеси в слой катализатора, сохраняя в реакционном объеме часть тепла химической реакции. Профили температур на выходе из слоя катализатора (за исключением пускового периода) оказываются падающими с ростом стененн превращения. Соответствующим выбором температуры переключения, линейной скорости, размера зерна катализатора, температуры на входе можно добиться хорошего приближения к теоретическому оптимальному режиму [c.19]

    На основе предположения о том, что динамика процессов в реакторе с неподвижным слое катализатора описывается математической моделью, учитывающей теплопроводность слоя катализатора, конвективный поток газа, межфазный тепло- и массообмен и химическую реакцию, изучается явление распространения теплового фронта. При некоторых естественных предположениях относительно зависимости скорости химическй реакции от температуры и состава реакционной смеси доказывается существование я единственность решения соответствующих уравнений в виде бегущей волны. Определяются условия существования стоячей волны. Нрицодятся оценки основных характеристик теплового фронта максимальной температуры, скорости распространения и ширины реакционной зоны. [c.167]


Смотреть страницы где упоминается термин Реакции химические и температура: [c.291]    [c.137]    [c.85]    [c.237]    [c.116]    [c.124]    [c.91]   
Процессы и аппараты нефтегазопереработки Изд2 (1987) -- [ c.341 ]




ПОИСК





Смотрите так же термины и статьи:

Реакция температуры

Химический ая ое температуры



© 2025 chem21.info Реклама на сайте