Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Феноляты полимерные

    Полимерные смазки такие, как фторопласт (тефлон), капрон пластики на основе фенола, находят все более широкое применение. Высокие физико-механические и антифрикционные свойства указанных пластмасс дают возможность применять их в условиях недостаточной жидкой смазки или полного ее отсутствия при относительна высоких и низких температурах. Наиболее широкое применение как твердая смазка получил фторопласт-4. [c.207]


    Фирмой Рои энд Хаас (США) разработан способ извлечения фенола и его производных адсорбцией на полимерном материале— сополимере стирола и дивинилбензола. Сточные воды, содержащие фенолы, пропускают через одну или несколько адсорбционных колонн, заполненных полимерной смолой. Очищенная вода содержит менее 0,0001% фенола. Адсорбционная емкость по фенолу зависит от природы и концентрации фенольных соединений, содержания солей и других органических примесей в сточной воде. [c.97]

    Для повышения эффективности газо- н нефтедобычи применяют различные химические реагенты, полученные на базе углеводородов нефти и газа (углеводородные растворители, поверхностно-активные вещества, полимерные реагенты и т. д.), а также отходы производства синтетических жирных кислот и высших жирных спиртов (включая кислые стоки), синтетических каучуков и полиолефинов, побочные продукты производства алкил-ароматических углеводородов, фенола и ацетона, мономеров для синтетического каучука и др. [c.184]

    Даже при самой тщательной подготовке исходного продукта он- будет содержать следы диолефинов, перекисей или продуктов разложения, вступающих в реакцию с некоторым количеством фенола с образованием неактивного отстоя. Отстой можно свести к минимуму, применяя газоулавливатели и приемники для первичного отбора первых погонов. Экспериментально показано, что при температуре ниже 170° коррозия углеродистой стали в результате воздействия фенола ничтожна. Небольшие количества солей железа с фенолом и полимерных соединений все-таки накопляются в растворителе, многократно циркулирующем через колонну. В некоторых установках осуществляется непрерывный отвод небольшою количества циркулирующего растворителя, который перегоняется для отделения фенола от высококипящего отстоя. Таким способом концентрация отстоя ограничивается 10—20% от всей жидкой фазы. [c.107]

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Известно, что персульфатные ионы 507 являются одним из сильнейших окисляюш,их агентов в водном растворе и в отличии от других продуктов распада органических перекисей не способны к реакциям присоединения [1. Нами было установлено, что при температуре 80°С и при мольном соотношении 2, 4, 5— трихлор-фенол персульфат 1 1, 2, 4, 5—трихлорфенол превращается в полимерные продукты, структура которых зависит от условий процесса. Физико-химические свойства их приводятся в таблице. [c.147]

    К какому типу ПлМ относятся полиэтилен полистирол фенол-формальдегидные полимерные материалы  [c.405]

    К важнейшим синтетическим полимерным материалам относят пластмассы, эластомеры, химические волокна и полимерные покрытия. В отличие от металлических материалов они имеют высокую устойчивость в агрессивных средах, низкую плотность, высокую стойкость к истиранию, хорошие диэлектрические и теплоизоляционные свойства. Из них несложно изготовить детали и аппараты сложной конструкции. Недостатком многих полимерных материалов является их склонность к старению и невысокая термическая стабильность (до 250 °С). Наиболее известны материалы на основе фенол-формальдегидных смол (с. 192), поливинилхлорида, полиэтиленов (с. 192) и фторопластов. [c.176]

    ЮТСЯ на горячих поверхностях, образуя полимерные фосфаты, полифосфаты металлов и фенолы. С другой стороны, органические фосфаты могут иметь практически неограниченный срок службы, если их кислотность и загрязненность вовремя ликвидируются в процессе эксплуатации. [c.60]

    Полиатомные фенолы также образуют с формальдегидом полимерные соединения. Скорость реакции поликонденсации возрастает с увеличением количества гидроксильных групп в молекуле фенола. Структура полимеров и их свойства зависят от взаимного расположения этих групп в феноле . Если гидроксильные группы находятся в мета-положении [c.380]

    Подобные оксизамещенные фенолы образуют с формальдегидом полимерные соединения наряду с некоторым количеством низкомолекулярных продуктов поликопденсации. [c.383]

    Образующиеся полимерные соединения получили название э п о к с и д и ы X с м о л ". В качестве диолов можно использовать двухатомные фенолы, например гидрохинон, дифени-л 0,11 пропан 1.2,2- (4,4 -диоксидифенил)-пропан  [c.409]

    При взаимодействии полиэпоксидов с двухатомными фенолами в полимерных цепях сохраняются только простые эфирные связи между алкильными или арильными группами, т. е. получается полимер в виде простого эфира. Такие полимеры имеют более высокую химическую и термическую стабильность, чем продукты отверждения полиэпоксидов полиаминами. [c.417]

    Эфиры титановой кислоты и многоатомных спиртов нерастворимы в воде и обладают повышенной термической устойчивостью. Эти наблюдения были использованы для модифицирования свойств иолимеров, относящихся к группе полимерных спиртов. При действии эфиров ортотитановой кислоты на поливиниловый спирт, феноло-формальдегидные полимеры и эпоксидные полимеры получены новые титанорганические полимеры, нерастворимые ь воде. [c.499]

    Полимерные иониты (ионообменные смолы) представляют собой сшитые в трехмерную сетку макромолекулы, содержащие ионогенные группы. В качестве примера ионообменной смолы приведем продукт поликонденсации фенол-сульфокислоты с формальдегидом [c.218]

    В настоящее время в литературе имеются работы, посвященные синтезу полимерных антиоксидантов различных типов [2]. Их получают сополимеризацией основного мономера с соединением, обладающим антиокислительными свойствами, поликонденсацией фенолов или аминов с галоген- и ф0 сф0 рс0-держащими соединениями или химической модификацией полимеров веществами, оказывающими стабилизирующее действие. Последний метод является более перспективным для получения ВАО. Во-первых, в данном случае значительно проще решается вопрос взаимной растворимости ВАО и стабилизируемого полимера, так как для модификации выбираются полимеры или олигомеры, у которых химическое строение аналогично защищаемому. Во-вторых, промышленностью в последние годы выпускается целый ряд полимеров и олигомеров, содержащих различные функциональные группы (ОН, С — С, СООН, N O [c.30]

    В зависимости от поведения при нагревании синтетические смолы и получаемые на их основе полимерные материалы делят на термопластичные (термопласты) и термореактивные (реакто-пласты). Первые характеризуются линейной структурой макромолекул, второе — сетчатой плоскостной или трехмерной структурой. Термопласты обладают способностью плавиться при нагревании и затвердевать при охлаждении, растворяться в определенных растворителях. К ним относятся полистирол, полиэтилен и др. Термореактивные смолы необратимо превращаются при нагревании и длительном хранении в твердые неплавкие и нерастворимые продукты. Их называют также резольными смолами (феноло-фор-мальдегидные, эпоксидные и др.). [c.218]


    В производстве полимерных материалов нашли применение производные бензола — стирол, фенол, анилин. Эти мономеры могут содержать в качестве примесей карбонильные и пероксидные соединения, полимер, гидрохинон, воду, а также примеси, связанные со способом получения мономера. Присутствие примесей влияет на процесс полимеризации и свойства получаемых молекул, например, может приводить к сшиванию молекул. Аналитический контроль позволяет регулировать технологический процесс. [c.353]

    Из клеев хорошими электроизоляционными свойствами и повышенной нагревостойкостью (180°С) обладают клеи БФ — смесь поливинилацеталей и фенол-формальдегидных смол. Они морозостойки (—60°С) и стойки к вибрациям. Полиэфироуретановый клей ПУ-2 пригоден для склеивания металлов, пластмасс, силикатного и органического стекла, дерева, резины, тканей и других материалов. К настоящему времени созданы клеи на основе почти всех видов полимерных материалов. [c.403]

    Поликарбонаты. Под этим названием обычно подразумевают полимерные эфиры двухатомных фенолов и угольной кислоты. [c.397]

    На всех этапах переработки фенольного сырья, где имеет место разбавление фенолятов, полимерные соединения частично выделяются из раствора и оседают в аппаратуре, вызывая значительные затруднения при ведении технологических процессов. При обезвоживании и дистилляции сырых фенолов полимерные соединения концентрируются в кубовых остатках, и для о беспечения их подвижности и транспортабельности в остатке оставляют 31начительное количество ценных фенолов в качестве растворителя. Каждый процент полимерных соединений вызывает поте ри до 1,5% фенолов. [c.72]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    Получение синтетических полимерных материалов, как было указано, осуществляется в основном с помощью реакций поли-кондснсации и полимеризации. На основе этих реакций с при-мен1Ч1пем различных технологических схем изготовляют все про-мьинленные виды пластических масс и резин. При поликонден-сацнн высокомолекулярное соединение образуется в результате последовательного взаимодействия молекул, содержащих две или несколько реакционносиособных групп. При этом всегда выделяется в качестве побочного продукта какое-либо низкомолекулярное вещество, напрнмер вода, кислота, аммиак и др. Так, фенол с ацетоном в присутствии кислот или оснований вступает в реакцию конденсации  [c.391]

    Быстрыми темпами развивается алкилирование фенола метанолом с целью синтеза о-крезола и особенно 2,6-ксиленола, служащего сырьем для производства нового полимерного материала— полифениленоксида. Последний представляет собой термопластичный материал, который (как и композиционные пластики на его основе) обладает стабильными физическими свойствами в диапазоне темшератур от минусовых до 240 °С, хорошими диэлект-ричеокими характеристиками, стойкостью к действию кислот, щелочей, перегретого пара. Они широко применяются в электротехнике и радиотехнике, в производстве медицинского оборудования, различных бытовых приборов и изделий [32, с. ПО 33]. Сум1мар-ные мощности установок по метилированию фенола за рубежом превышают 100 тыс. т/год. Алкилирование ведут метанолом при 320—400 °С в газовой фазе с использованием катализаторов (оксиды металлов, обычно активированный у-оксид алюминия). [c.59]

    Важным потребителем толуола стало производство синтетических крезолов [19, с. 63—78]. Потребность в крезол ах определяется производством ядохимикатов из о-крезола для сельского хозяйства (отличающихся высокой селективностью по сравнению с ядохимикатами на основе фенола) и лаковых фенольных смол (отличающихся высокой эластичностью) л1-крезол является сырьем для ряда ядохимикатов, нетоксичных для человека и тепло- кровных животных л-крезол служит основным сырьем для массового производства нетоксичных и неокрашивающих антиоксидантов (ионола и антиоксиданта 2,2,4,6) наконец, смесь л -кре-зола (50—60%) и -крезола — так называемая дикрезольная фракция — служит сырьем для крезолоальдегидных смол и три-арилфосфатов. Крезолоальдегидные отличаются от фенолоальдегидных смол большей термо- и водостойкостью, лучшими адгезионными и клеющими свойствами, лучшими диэлектрическими показателями. Нетоксичные триарилфосфаты используют как пластификаторы и антипирены для изготовления ряда полимерных материалов и, в первую очередь, поливинилхлорида. [c.73]

    Для преврапцения фенопластов в феноло-формальдегидные пластические массы их подвергают термической обработке. Во многих случаях эта операция совмещается с операцией формования изделия. Фенопласты перерабатываются методами горячего прессования, литья под давлением, экструзией. При этом происходит отверждение полимерной фазы и образование пространственной сетчатой ( сшитой ) структуры, в которой макромолекулярные цепи олигомеров соединены между собой метиленовыми мостиками  [c.403]

    Эти вещества — жидкости с температурой кипения около 400°С, имеющие температуру самовоспламенения 800—850 0, являются хорошими пластификаторами для ряда полимерных материалов, способными к тому же делать эти материалы негорючими. Происходит постепенная замена турбинных масел, обеспечивающих системы смазки и регулирования работы оборудования турбинных залов тепловых и атомных электростанций, системы гидравлических прессов и оборудования для обработки металлов давлением, на негорючие жидкости на базе триксилилфосфатов, что резко увеличивает надежность соответствующих предприятий. Для обеспечения безопасного использования сложных эфиров фосфорной кислоты их получают из узких фракций дикрезола и ксиленолов, содержащих ограниченные количества изомеров с метильными группами в о-положении. Присутствие таких групп в сложном эфире фосфорной кислоты и фенола делает его нервным ядом. Поэтому организован вьтуск дикрезола, содержащего не более 3% о-крезола и узкой фракции ксиленолов, состоящей в основном из 3,5- и 3,4-ксиленола. [c.353]

    Расход сырья на нефтехимиче1ские продукты колеблется от 0,3 до 3 т на 1т продукции. Минимальный расход сырья в производствах метанола, этилового спирта, фенола, бензола, ксилолов. Наибольший расход сырья в производствах на основе этилена, пропилена, изопрена, дивинила. Так, расход сырья на 1 т совместного получения мономеров составляет 2—2,5 т, на 1 т полимерных материалов — 2,25—2,75 т. [c.97]

    Полимерные бензиловые эфиры особенно легко образуются из фе-нолоспиртов, которые в свою очередь могут быть получены из фенолов и формальдегида. Эти реакции играют большую роль при фепол-фор-мальдегидной поликонденсации. Например, при конденсации путем, осторожного плавления 2,б-диоксиметил-л-крезола при 130° получаются линейные макромолекулы (Кеммерер)  [c.945]

    Не только алкиленбензольные, но и алкиленфенольные группы могут являться звеньями основных цепей макромолекул. Такие полимерные соединения получают п о л и к о н д е п-с а ц и е й фенолов и альдегидов. [c.372]

    В качестве фенолов можно применять феноло-формальде-гидные новолаки и резолы. Реакция образования такого высокомолекулярного полимера из двух сравнительно низкомолекулярных полимерных соединений не сопровождается выделением побочных веществ. Это имеет весьма большое значение в технологии изготовления деталей из пластмасс, особенно стеклопластиков, а также важно в процессах склеивания и высыхания пленок. Соче-тагше резолов с полиэпоксидом дает возможность получить нерастворимые полимеры, значительно более упругие, чем резиты, улучшить адгезию полимера к металлам и стекловолокну, повысить теплостойкость по сравнению с теплостойкостью продуктов взаимодействия полиэпоксидов и полиаминов. Предел прочности при растяжении стеклопластиков на основе полиэпоксидо-резольных композиций может достигать 2500—4000 кг см .  [c.417]

    Полимерные эфиры угольной кислоты получают взаимодействием хлорангидрида угольной кислоты с многоатомными спиртами и дифенолами в присутствии веществ, вступающих в реакцию с выделяющимся хлористым водородом. Поликарбонаты можно получать и другими методами, например переэтерификацией эфиров угольной кислоты диоксисоединениями в присутствии катализаторов (соли, окислы металлов и др.). В зависимости от выбора многоатомного спирта или фенола можно получить полимеры линейной или пространственной структуры. Наибольший интерес представляют термопластичнрле полимеры, синтез которых осуществляется с участием двухатомных фенолов. Высокомолекулярные поликарбонаты, молекулярный вес которых достигает 50 ООО, получают прп действии фосгена на дифенилолпро-пан в присутствии щелочного катализатора при 150—300°  [c.426]

    Сочетанием полученного диазосополимера с фенолом или аминем получают полимерн ле красители. Так, при сочетании с нафтолом можно получить следующий полимерный краситель  [c.531]

    Синтез полимерных ионитов с наперед заданными свойствами может осуществляться несколькими путями поликонденсацией или полимеризацией. Вещество с сетчатой структурой, содержащее фиксированные ионы, можно синтезировать на основе мономерных органических электролитов. В другом случае ионогенные группы вводятся в готовый полимер. В процессе синтеза важно, чтобы пространственная решетка полимера была достаточно разветвлена и линейные цепи были соединены мел ду собой поперечными связями — мостиками . Исходными мономерами для синтеза обычно служат пара-замещенные фенолы и формальдегид, стирол и дивинил или дивинилбензол, этилендиампн и эпихлоргидрин, стирол и эфир двухатомного спирта и ненасыщенной кислоты и др. Варьируя основные мономеры и сополимеры, а такх-се ионогенные группы, создают большое разно-рН(рОН1 образие синтетических смол, обладаю-Рис. 111.4. Зависимость об- определенными, заранее заданными [c.114]

    Под таким названием известны новые клеящие и кроющие сгроительнЕле полимерные материалы на основе продуктов сланце-химии. Альтины — смесь олигомера и мономера. Они получаются из фурфурола, водорастворимых фенолов (75% двухатомных 10 /о одноатомных и остальные — высшие), а также тиокола — в качестве пластификатора, взятых в соотношении 1 1 1. При добавлении отвердителя (ПЭПА — полиэтиленполиамина) происходит процесс поликонденсации с образованием трехмерной структуры. [c.430]

    Клеи (адгезивы). В качестве клеящих материалов большей частью служат растворы (водные, ацетоновые и др.) высокомолекулярных органических соединений, природных и синтетических. Представителями первых являются столярный и казеиновый клеи (белковой природы), а также декстриновый клей (углеводной природы). Резиновый клей — раствор невулканизированного каучука в бензине. Большое значение в настоящее время приобретают полимерные адгезивы, изготовляемые из различных смол — фенол-формальдегидных, мочевнно-формальдегндных и др. Состав адгезива подбирают с учетом природы поверхностей склеиваемых предметов (клеи для металлов, стекла, кожи, дерева, бумаги и т. д.). Например, клеи на основе эпоксидных смол с добавкой стального порошка чрезвычайно прочно скрепляют металлические поверхности, конкурируя со сваркой. Многие полимерные клеи обладают универсальным действием. [c.257]

    Образующаяся эпоксидная смола представляет собой полимерный простой эфир фенола (в данном случае ди-фенилолпропана) с концевыми эпоксидными группами, благодаря которым. такие смолы легко отверждаются при обычных температуре и давлении под действием отвердителей (амины, ангидриды и др.). При этом эпоксидные смолы образуют пространственную трехмерную структуру. Эпоксидные смолы обладают хорошей адгезией к различным материалам, высокой механической прочностью, стойкостью к действию химических реагентов, хорошими диэлектрическими показателями. [c.396]


Смотреть страницы где упоминается термин Феноляты полимерные: [c.355]    [c.169]    [c.260]    [c.26]    [c.947]    [c.377]    [c.187]    [c.31]    [c.43]    [c.123]    [c.352]    [c.283]   
Химия сантехнических полимеров Издание 2 (1964) -- [ c.437 ]




ПОИСК







© 2025 chem21.info Реклама на сайте