Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электрохимический мембранный

    Из (7.68) при учете выражений для электрохимического, химического и гальвани-потенциалов (67), (36) и (75) следует, что скачок потенциала между мембраной и раствором определяется уравнением [c.174]

    Большую часть электрохимического потенциала составляет мембранный потенциал, а в градиенте pH коэффициент 2 служит для перевода pH в милливольты. Зная общую величину изменения электрохимического потенциала, можно найти и величину изменения свободной энергии. [c.87]


    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    Два водных раствора, и и г, и органический раствор о. 8 образуют ячейку с жидкой мембраной с двойным распределением [381]. Для серии измерений, проведенных с электродом фиксированного состава и раствором У1 различной концентрации, потенциал электрохимической цепи между раствором и электродом сравнения в растворе 2 (постоянного состава и концентрации) зависит от активности иона А в растворе Wl в соответствии с уравнением Нернста [c.143]

    Измерения потенциалов и токов течения в четырехэлектродной ячейке (два дисковых электрода, наложенных на диафрагму, и два — в растворе, вдали от диафрагмы) показали, что эти величины изменяются по мере течения и тем сильнее, чем выше электрохимическая активность диафрагмы. Эти изменения обусловлены фильтрационным эффектом (тормозящим влиянием поля двойного электрического слоя на конвективный перенос тонов). Изменения значительны для коллодиевых мембран и почти отсутствуют в порошковых кварцевых диафрагмах. Изучено влияние различных компонент (потенциал течения, мембранный потенциал, концентрационная э.д.с.) на величину измеряемого суммарного потенциала в обычных условиях измерения потенциала течения и при шунтировании электродов (переход к методике тока течения). Показано, что медленный спад потенциала после прекращения течения обусловлен концентрационной поляризацией. [c.189]

    Появление электрохимического мембранного потенциала ионов Н+, возможно, стало поворотным моментом в переходе протобионтов из неживого в живое состояние в соответствии с теорией советского биолога Э. С. Бауэра (1935), согласно которой живое состояние базируется на принципе устойчивого неравновесия. [c.122]

    Рассмотрим электрохимическую мембрану, представляющую собой малорастворимую соль ЛА. Мембрана разделяет два раствора с различными концентрациями аниона А с2 и С1). Замечет различий в активностях этого иона возникает мембранный потенциал. Диффузионный потенциал внутри мембраны не образуется. В этих условиях при установлении равновесия между мембраной и раствором 1 имеем [c.63]


    При помещении мембраны в раствор электролита возникает мембранный потенциал. Так как активность данных ионов в растворе и на мембране различна, то проявляется тенденция к и.к выравниванию. В то же время катионы и анионы в растворе и мембране связаны между собой условием электронейтральности, что обусловливает возникновение электрического потенциала на границе фаз, который компенсирует указанную тенденцию каждого вида ионов к диффузии и приводит к установлению равновесия. Условием равновесия является равенство электрохимических потенциалов в фазах  [c.174]

    Особое место в измерении pH растворов занимает стеклянный электрод, широко используемый в настоящее время благодаря ряду его преимуществ (большая селективность, неподверженность отравлению, отсутствие влияния сильных окислителей и восстановителей и пр.). Механизм возникновения потенциала на поверхности стеклянного электрода не является электрохимическим, он в принципе относится к мембранным ионоселективным электродам, которые в последние годы все чаще применяют для определения активности (концентрации) самых различных ионов (катионов и анионов) и привели к возникновению нового раздела прямой потенциометрии — ионометрии. [c.104]

    Чтобы вывести уравнение для мембранного потенциала, запишем условие электрохимического равновесия для границы растворов 1 и 2  [c.133]

    При действии раздражителя на нервное или мышечное волокно мембранный потенциал в месте раздражения нарушается. Это нарушение начинает распространяться вдоль волокна приблизительно с постоянной скоростью. В первый момент состояния возбуждения резко возрастает проницаемость мембраны для ионов Ыа+, поток которых устремляется внутрь клетки. Затем возникает ток ионов К+, направленный во внешнюю среду. Распространяющаяся по волокну волна называется волной потенциала действия. Схема распространения нервного импульса может быть смоделирована на основе некоторых электрохимических систем, а само явление можно феноменологически описать, если задаться электрической емкостью, сопротивлением утечки мембраны, формой нервного импульса, и рассматривать его как распространение электрического сигнала в кабеле с определенными параметрами. [c.159]

    Стеклянный электрод. Стеклянный электрод относится к мембранным электродам, механизм действия которых все еще не вполне установлен, однако имеется немало состоятельных объяснений причин функционирования стеклянных электродов в качестве водородных электродов. И хотя в данном случае отсутствуют электрохимические реакции окисления и восстановления компонентов, обусловливающие возникновение разности потенциала на поверхности раздела стекло — раствор, зависимость потенциалов стеклянных электродов от pH растворов вполне закономерно описывается уравнением, аналогичным уравнению Нернста. [c.60]

    Уравнение для потенциала Д ф на границе исследуемый раствор — мембрана можно получить из термодинамического условия равновесия заряженных частиц, т. е. условия равенства электрохимических потенциалов ц,- ионов /-го рода, способных проникать в мембрану р. = Д , где прямая черта над 1 и ф означает, что эта величина относится к фазе мембраны. Итак  [c.520]

    Диффузионный потенциал Афд может возникнуть за счет различия в подвижностях ионов в мембране и наличия градиента электрохимических потенциалов внутри мембраны. [c.520]

    Ионселективные электроды — это электрохимические полуэлементы, в которых разность потенциалов на границе раздела фаз электродный материал — электролит зависит от концентрации (точнее, от активности) определяемого иона в растворе. Электродный материал представляет собой твердую или жидкую мембрану, в которую введено вещество, способное отщеплять подлежащие определению ионы. Эти ионы при соприкосновении с водой или с водным раствором электролита способны переходить в него. Иногда, наоборот, ионы нз раствора проникают в мембрану. В результате поверхность мембраны приобретает заряд, противоположный заряду перешедших в раствор ионов, и на границе раздела фаз возникает потенциал, значение которого зависит от активности данных ионов в растворе. Если мембрана разделяет два раствора с различной активностью, например однозарядных ионов, тогда потенциал определяется уравнением Нернста  [c.467]

    Хемиосмотическая гипотеза энергетического сопряжения, в живой клетке получила в последнее время много экспериментальных подтверждений. Эта гипотеза, которую многие специалисты называют уже теорией, не отрицает существования предшественника АТФ в системе окислительного фосфорилирования, но свойство унифицированной формы энергии относит к трансмембранному электрохимическому потенциалу ионов водорода Н+ ((Лцн ). Таким образом, клетка имеет две формы унифицированной энергии — химическую в форме АТФ и энергию в форме мембранного потенциала. Через мембранный потенциал энергия окисления трансформируется затем в дмическую работу (синтез АТФ, обратный перенос электронов в других местах энергетического сопряжения), в осмотическую работу (транспорт ионов против градиента через мембрану), в тепло. Главная же функция мембранного потенциала — сопряжение процессов окисления и фосфорилирования. [c.409]


    Натрий — внеклеточный катион. Содержание его в плазме крови составляет 135-150 ммоль/л, в эритроцитах — 8—13 ммоль/л. В течение суток с пищей поступает 3-4 г натрия, практически такое же количество выводится почками. Реабсорбция н трия в почечных канальцах — это активный процесс, требующий затраты АТФ и сопровождающийся секрецией калия и протонов в мочу. Функции натрия создание электрохимического потенциала на мембранах клетки поддержание осмотического давления регуляция кислотно-ос-но вного равновесия (при реабсорбции натрия в мочу секретируются протоны, т.е. удаляются кислые продукты метаболизма). [c.419]

    В этой системе следует еще учесть перенос других ионов J oh через мембрану под влиянием Аф на мембране. В результате решения уравнений Онзагера для всех процессов можно получить соотношение между значением электрохимического мембранного потенциала (Арн) и величинами АрН и Аф на мембране (Вастерхофф). В упрощенном виде [c.135]

    Процесс возбуждения развивается вследствие зависимости проницаемости мембраны для ионов от мембранного потенциала. При достижении критической деполяризации, когда возрастает проницаемость мембраны для Ма , эти ионы устремляются внутрь и вызывают дальнейшую деполяризацию мембраны. Процесс продолжается до тех пор, пока потенциал не сместится до равновесного натриевого потенциала. В этих условиях потоки Ма наружу и внутрь сравниваются. Затем происходит увеличение проницаемости для К+ и ионы К начинают выходить из клетки по градиенту своего электрохимического потенциала. В этом процессе мембрана реполяризуется. Выход К+ прекраш ается, когда потенциал на мембране приблизится к равновесному калиевому потенциалу.  [c.169]

    Хемиосмотическая концепция П. Митчелла. Данная концепция относится к числу наиболее обоснованных и общепризнанных. Согласно работам [88,89,93] система переноса электронов, расположенная в биомембране, создает в ней градиент электрохимического потенциала протонов (Д1хн+), который состоит из двух слагаемых Д ф — электрического потенциала, заряжающего мембрану, и А pH — градиента концентрации протонов по обе стороны мембраны. По определению электрохимического потенциала [c.39]

    Мембранный потециал является обобщенной характеристикой всякой мембраны. Следовательно, генерация мембранного потенциала при переносе какого-нибудь иона сказывается на электрохимическом равновесном распределении всех других ионов на данной мембране. Мембранный потенциал, образующийся при переносе протонов, можно измерить с помощью других ионов. Если какой-то ион проникает через мембрану по механизму электрогенного унипорта, то после установления равновесия потенциал на мембране можно определить по распределению этого иона на основании уравнения (3.29). Этот принцип лежит в основе большинства методов измерения Ai в органеллах (разд. 4.2). Изменение равновесного распределения иона в зависимости от Ai показано на рис. 3.5. [c.59]

    Na" (ApNa ) — нужно рассматривать как резервную форму энергии. Таким образом, в живых клетках помимо дыхательных субстратов энергия может запасаться в двух формах — в виде легко отдающих энергию химических соединений (АТР, NADH и др.) и в виде электрохимического мембранного потенциала (АДн+, A iNa+)- Все эти резервные формы энергии способны к взаимопревращениям, а также могут быть использованы на другие виды работ химическую, осмотическую, тепловую и т. д. [c.18]

    Решающее значение для совершенствования энергетических механизмов клеток имело появление в ходе эволюции способности к активному трансмембранному переносу ионов Н . АТРазная -помпа (рис. 3.29,1) должна была функционировать уже у самых примитивных клеток — протобионтов — для удаления избытка ионов Н+, которые накапливались в них при брожении (анаэробном окислении глюкозы). В результате выкачивания ионов Н+ во внутриклеточной среде не только поддерживался оптимальный для синтетических процессов уровень pH, но и возникал электрохимический мембранный потенциал, который стал энергетической основой мембранного транспорта и осморегуляции (рис. 3.29, II). [c.122]

    Мембраны ионоселективных электродов обладают большой специфичностью по отношению к определенному виду ионов возникающий прн этом потенциал составляет значительную часть э.д.с. соответствующей электрохимической снстемы. Если ионоселективный электрод сочетать с ферментом, сг[особным избирательно катализировать одну определенную реакцию, протекающую с участием ионов, по отношению к которым обратим этот электрод, то по изменению потенциала электрода можно следить за ходом реакции. Ионоселективные электроды применяются при изучении либо естественных, либо моделирующих их искусственных биологических мембран, что составляет одну из задач науки биоэлектрохимии, родившейся на стыке электрохимии и биологии. [c.207]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    Величина fi,- названа электрохимическим потенциалом (Гуг-генгейм) он равен энергии Гиббса 1 моль иона определенного типа или электрона в данной системе и при данном ее состоянии, т. е. при фиксированном составе, давлении и температуре. Подобно химическому потенциалу для незаряженных частиц электрохимический потенциал определяет направление процесса, приводящего к выравниванию его значения как внутри каждой фазы, так и во всей системе в целом. Электрохимический потенциал широко используют для описания распределения ионов и электронов между фазами, мембранных равновесий и процессов, протекающих в гальванических элементах. [c.424]

    Последние — зто электрохимические системы, в которых потенциал определяется процессами распределения ионов между мембраной и раствором. При этом распределяются преимущественно ионы одинакового знака заряда. Поэтому мембрана имеет ионную проводимость. До середины 60-х гг. основными ИСЭ были стеклянные, а также электроды на основе твердых ионитов с фиксированными группами (смоляные, из минералов, глин и др.). В 60—70-х гг. созданы десятки новых ИСЭ на основе жидких и твердых ионитов, моно-и поликристаллов, мембраноактивных комплексонов (МАК), элементоорганических соединений. Получили широкое применение электроды с четко выраженной селективностью к ионам К , Na ", ТГ, NH , Са Ва % I( a= + Mg 0, d Pb u= Ag F . СГ. Вг, Г. [c.519]

    Омагничивание агрессивных растворов проводили на установке простой конструкции, схема которой представлена на рис. 45. От источника УИП-1 подавали постоянный ток силой до 600 мА на однополюсный магнит. Напряженность магнитного поля увеличивалась до 80 х X Ю А/м. Жидкость при помощи центробежного насоса постоянной производительности циркулировала по стеклянной трубке, установленной перпендикулярно к силовым линиям магнитного поля. Для изменения скорости потока использовали трубки различного диаметра. Время пребывания сероводородсодержащего раствора в магнитном поле составляло 0,1 с при общем времени омагничивания 30 мин. В растворе содержалось 2500-2700 мг/л Н З. Диффузию водорода через мембрану из стали марки 12Х1МФ определяли электрохимически по спаду потенциала запассивированной стороны мембраны. [c.191]

    Иончувствительные мембраны (ИЧМ) представляют собой основу многих электрохимических методов анализа. По агрегатному состоянию различают твердые, жидкие и пластифицированные мембраны. Электрический потенциал, возникающий на границе мембрана-водный раствор, определяется активностью, а при определенных условиях концентрацией заряженных частиц водного раствора. Пластифицированные ИЧМ - область исследований кафедры аналитической химии - должны обладать следующими физическими, механическими и химическими свойствами ионной проводимостью, прочностью, достаточной электропроводностью. ИЧМ можно отнести к классу наполненных полимеров. На сегодня состав мембранных композиций ИЧМ стандартен. В качестве матрицы таких полимеров до сих пор чаще всего используют поливинилхлорид (ПВХ) в настоящее время проводятся активные исследования других полимеров с точкой стеклования ниже комнатной прежде всего полимеров акрилового ряда. [c.72]

    Параллельно со снятием потенциодинамических поляризационных кривых определялось количество водорода, возникающее при электрохимических процессах на мембранах толщиной 80 и 200 мкм, изготовленных из указанных материалов. Количество водорода определялось по току его ионизации на стороне мембраны, гальванически покрытой палладием. Экспериментальная установка (рис. 1.23) состояла из двух трехэлектродных электрохимических ячеек, снабженных платиновыми вспомогательными электродами и подключенных к потенциостатам ЕР-22 и ЕР-20А. В качестве электролита, чувствительного к изменению концентрации ионов водорода, использовался 0,1 и. раствор NaOH. Величина потенциала на палладированной поверхности поддерживалась равной 300 мВ (НКЭ). Результаты исследований приведены на рис. 1.24. [c.38]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]

    Химический механизм сопряжения переноса электронов с образованием АТФ неизвестен. Наибольшее признание в последние годы получила гипотеза П. Митчелла об электрохимическом (хемиосмотиче-ском) сопряжении окислительных реакций в дыхательной цепи с синтезом АТФ, катализируемым АТФ-синтетазным комплексом. Согласно этой гипотезе вне- и внутримитохондриальные пространства (левая и правая часть рисунка соответственно) разделены мембраной М, непроницаемой для ионов водорода — Н+. Дыхательная цепь организована в мембране таким образом, что окисление субстрата (SH2) кислородом приводит к разделению зарядов (группа реакций — I). Энергия окисления запасается в виде электрохимического потенциала Н+ [c.471]

    Итак, система для измерения кривых ток—потенциал содержит три электрода (рис. 2.3). Электрод 1, на котором протекает исследуемая электрохимическая реакция, называют индикаторным или рабочим электродом. Электрод 2, которым оканчивается цепь, называют вспомогательным электродом, илн противоэлектродом. Устройство, называемое потенциостатом 4, поддерживает разность потенциалов Е между электродом сравнения 3 и рабочим электродом 1 путем подачи тока, величина которого соответствует изменениям иа рабочем электроде. Кривую ток — потенциал получают, регистрируя значение / пО мере того, как медленно и линейно во времени изменяется потенциал рабочего электрода. Явления, происходящие на проти-воэлектроде, обычно малоинтересны как правило, достаточно отделить рабочий электрод от этого электрода пористой мембраной илн солевым мостнком, чтобы избежать влияния продуктов, образовавшихся на протнвоэлектроде, на исследуемые [c.33]


Смотреть страницы где упоминается термин Потенциал электрохимический мембранный: [c.87]    [c.554]    [c.245]    [c.394]    [c.154]    [c.154]    [c.136]    [c.63]    [c.18]    [c.209]    [c.18]    [c.155]    [c.375]    [c.472]    [c.380]   
Биофизика Т.1 (1997) -- [ c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Мембранный потенциал

Потенциал электрохимический



© 2025 chem21.info Реклама на сайте