Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура, методы исследования лучей

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между атомами, ионами и молекулами в кристаллах. Поэтому, проходя через вещество, эти лучи дифрагируют. Возникающая при этом дифракционная картина строго соответствует структуре исследуемого вещества. Рентгеновские лучи (рентгенография) чаще всего применяют для исследования структуры кристаллов, электроны (электронография) — для исследования газов и кристаллов нейтроны (нейтронография) — для исследования жидкостей и твердых гел. [c.150]


    Рентгеноструктурный анализ. Метод исследования с помощью дифракции рентгеновских лучей. За 65 лет, прошедших со времени открытия дифракции рентгеновских лучей в кристаллах, рентгеноструктурный анализ превратился в массовый метод исследования структуры неорганических кристаллов и полимерных веществ [310—312]. Применительно к исследованию асфальтенов он начал использоваться последние 20 лет. [c.154]

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между частицами (ионами, атомами или молекулами) в кристаллах. Поэтому, проходя через вещество, лучи рассеиваются (дифрагируют). Возникающая дифракционная картина строго соответствует структуре исследуемого вещества. Среди дифракционных методов различают рентгенографию, электронографию и нейтронографию. [c.182]

    Наряду с рентгеновскими методами электронная микроскопия также является одним из основных и высокоэффективных методов исследования твердых веществ. Но рентгеновские лучи не могут дать изображения структуры, поскольку их нельзя сфокусировать системой линз. [c.155]

    В общем курсе кристаллохимии рассматриваются методы исследования структуры кристаллов — рентгеноструктурный анализ, нейтронография и, частично, электронография. Однако не дается изложение специального метода рентгеноструктурного анализа, который используется для определения абсолютной конфигурации молекул. Такая задача возникает при изучении оптически активных веществ. В гл. VIH, IX и X представлены оптические методы исследования оптически активных веществ. Особенность этих методов состоит в том, что легко определить с их помощью различие в абсолютной конфигурации молекул, но нет возможности прямого отнесения экспериментальных данных по ДОВ или КД к определенному энантиомеру. Именно эту проблему и решает метод аномального рассеяния рентгеновских лучей. [c.216]

    РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ — метод исследования строения вещества, использующий дифракцию (рассеивание) рентгеновских лучей. Р. а. является основным методом определения структуры кристаллов. Метод основан на дифракции рентгеновских лучей частицами веществ, расположенными в пространстве кристалла. [c.214]


    Длина волны рентгеновских лучей того же порядка, что и расстояние между атомами и ионами в молекулах или кристаллах 0,1 нм). Поэтому кристалл ведет себя по отношению к рентгеновскому лучу как дифракционная решетка. Рентгеноструктурный метод исследования основан на том, что рентгеновские лучи, проходя через кристалл, отклоняются или отражаются вполне закономерным образом в зависимости от параметров кристаллической решетки. Помещая на их пути фотопленку, получают рентгенограмму кристалла в виде точечных пятен для упорядоченных структур или в виде тонких дуг для волокнистых и порошкообразных структур. [c.395]

    Как и любой метод физико-химического исследования, электронная микроскопия должна дополняться другими методами исследования — прямыми и косвенными. Так, к числу первых следует отнести метод, основанный на рассеивании рентгеновских лучей под малыми углами, так как этот метод позволяет исследовать периодические структуры с периодом в несколько сотен А. [c.166]

    Ближний порядок, т. е. способ расположения молекул в жидкостях, вблизи температуры плавления больше напоминает расположение частиц в решетке кристалла, чем в сильно сжатом газе. Это подтверждают прямые методы исследования структуры (рассеяние рентгеновских лучей в жидкостях и кристаллах) и косвенные данные. Например, для кристаллов и жидкостей вбли-9 — Полторак О. М. 257 [c.257]

    Измерение и определение пористости возможно только для таких агрегатов, которые механически достаточно прочны и на которые не будут оказывать воздействие методы исследования. Например, получение характеристик пористости посредством измерения методом вдавливания ртути возможно для обычных силикагелей, используемых в качестве катализаторов, однако структура аэрогелей или осажденных кремнеземов должна при этом методе разрушиться, и полученные результаты оказываются бессмысленными. С другой стороны, измерение размеров пор путем заполнения их жидким азотом — значительно менее разрушающий способ, а анализ методом малоуглового рассеяния рентгеновских лучей, очевидно, совершенно не разрушает структуру. [c.656]

    Изучение дифракции рентгеновских лучей на кристаллах Пр1 вело к созданию метода исследования атомного строения кристам лов Методами рентгеноструктурного анализа >же успешно ра< шифрованы структуры большого числа кристаллов Методик определения структуры также детально разработана - . [c.102]

    При изучении процессов образования новых дисперсных фаз, играющих решающую роль в формировании высокомолекулярных конденсационных структур,— студней или гелей большая роль отводится исследованию различных физико-химических свойств этих структур методами светорассеяния, малоуглового рассеяния рентгеновских лучей, а также электронной микроскопии, которые позволяют установить объективные различия между гомогенными, однофазными и гетерогенными двухфазными системами. [c.63]

    Первые рентгенограммы целлюлозы были получены в самом начале развития рентгеновского метода исследования структуры кристаллов. Картина дифракции представляла собой, как известно, систему размытых рефлексов. Формальное применение к целлюлозе теории рассеяния рентгеновских лучей па низкомолекулярпых кристаллах привело к выводу о том, что расширение интерференционных пятен обусловлено очень малыми размерами кристаллов целлюлозы и что вырождение интерференционных колец в пятна и дуги связано с высокой степенью ориентации этих кристаллов в волокне. Такой вывод хорошо согласовался с наличием у целлюлозных волокон двойного лучепреломления света, которое считалось ранее для однородных систем неотъемлемым свойством кристаллической фазы. [c.81]

    К принятым до сих пор методам исследования структуры катализа торов присоединился за последнее время электронно-микроскопический метод. Спецификой электронной микроскопии, использующей вместо световых лучей поток быстрых электронов, является возможность, на достаточно тонких образцах, непосредственно визуально наблюдать на флуоресцирующем экране или на фотопластинке мельчайшие детали, вплоть до величины в 25—30 А (т. е. в 10- 15 атомных расстояний). [c.137]

    В течение последних лет рентгеноструктурный анализ кристаллов стал мощным инструментом исследования строения молекул. В настоящее время в связи с внедрением вычислительной техники изучение молекулярной структуры методом дифракции рентгеновских лучей является формально вычислительной процедурой. Практически же измерение дифракционной картины кристалла, а также решение и уточнение структуры не автоматизировано полностью. В большинстве случаев на основе рентгеновских данных можно быстро и точно рассчитать конформацию молекулы. Однако вычисление может не дать результата даже при отсутствии систематических ошибок в эксперименте, например, в случае неопределенной симметрии, двойниковых или разупорядоченных кристаллов. Тем не менее, рентгеноструктурный анализ является основным источником информации о структуре более или менее сложных молекул, и, следовательно, для химика важно владеть основными знаниями о методах рентгеновской кристаллографии [1, 2]. [c.238]


    Другой широко распространенный метод исследования заключается в использовании рентгеновских лучей. Источник последних, коллимированный для уменьшения рассеивания (экстрафокальиое излучение), устанавливается на одной стороне псевдоожиженного слоя проникающий пучок лучей воспринимается фйсфоресцирующим экраном (рис. 1У-4). Газовый пузырь появляется на негативе в виде темного пятна па световом фоне, т. е. метод совершенно аналогичен медицинской рентгенографии. Огромное преимущество этого метода состоит в том, что слой может иметь любую форму и, в принципе, любые размеры, и структура его совершенно не искажается при наблюдении. Метод позволяет визуально оценивать размеры и форму пузыря в любом его положении и пол чить гораздо больше информации, чем при использовании зондов. [c.128]

    Если длина волны близка по порядку величины размерам молекул и расстояниям между ними, то наблюдается известная интерференционная картина, изучение которой позволяет получить ценные сведения о структуре вещества. Рентгеновские лучи и электроны рассеиваются на электронных оболочках атомов, причем в первом случае (рентгеновские лучи) главную роль играют максимумы электронной плотности, а во втором случае (пучки электронов) — неоднородность электрического поля вблизи атомных ядер. Рентгеновский метод наиболее ценен при определении структуры кристаллических соединений (его основы рассматриваются в разд. 6.4.1). Здесь обсуждают только наиболее существенные аспекты определения строения отдельных молекул с помощью дифракционных методов. Строение молекулы можно установить вполне однозначно, если получить дифракционную картину вещества в газовой фазе (пар). Однако из-за низкой плотности рассеивающей среды для получения дифракционной картины в рентгеновских лучах необходима экспозиция в течение многих часов, а для получения элект-ронограммы — в течение нескольких секунд. Поэтому для исследования молекул в газовой фазе применяется преимущественно метод электронографии. [c.74]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    Изучение структуры полимеров может осуществляться различными физическими методами, в том числе методом электронной микроскопии, который позволяет оценивать некоторые особенности надмолекулярного строения полимеров в диапазоне размеров от нескольких десятков ангстрем до сотен микрон. Электронная микроскопия обычно применяется в совокупности с другими методами исследований, такими, как оптическая микроскопия, дифракция рентгеновых лучей и электронография. [c.109]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Электронография как метод изучения структуры кристаллов имеет след, особенности 1) взаимод. в-ва с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях в-ва толщиной 1-100 нм, 2) /з зависит от атомного номера слабее, чем /р, что позволяет проще определять положение легких атомов в присут. тяжелых 3) благодаря тому что длина волны обычно используемых быстрых электронов с энергией 50-100 кэВ составляет ок. 5-10 им, геом. интерпретация электронограмм существенно проще. Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10-300 эВ, X 0,1-0,4 нм)-эффективный метод исследования пов-стей кристаллов расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракц. картине и позволяет изучать структуру кристаллов с разрешением 0,2-0,5 нм. [c.99]

    Как наука К. сформировалась вскоре после 1912, когда М. Лауэ, В. Фридрих и П. Книппинг открыли дифракцию рентгеновских лучей, быстро превратившуюся в мощный метод исследования строения твердых в-в-рентгеновский структурный анализ. В послед, неск. лет У. Г. Брэгги, У. Л. Брэгги и др. изучили кристаллич. структуры мн. ме- [c.536]

    А. Ф. Щуров, Т. А. Ершова, Е. Я. Гиенко (Горьковский государственный университет). В работах [1, 2] и работе Плавника изложено современное состояние рентгеновских методов исследования структуры дисперсных пористых тел. Основное внимание уделено описанию техники эксперимента и методам вычисления структурных характеристик по данным малоуглового рассеяния рентгеновских лучей (РМУ). Несмотря на то, что после появления первых публикаций [1—3] по применению метода РМУ к изучению пористых твердых тел прошло более 20 лет, он, к сожалению, пока не нашел такого же широкого применения, как метод БЭТ и ртутная порометрия. [c.227]

    РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, дифракционный метод исследования атомно-молекулярного строения в-в, гл. обр. кристаллов, основанный на изучении дифракции рентгеновских лучей с длиной волны ок. 0,1 нм. Нек-рые задачи, вапр. определение положения части атомов в кристаллах относительно простого строения, можно решать с применением поликристаллич. образцов, однако по.чное определение структуры проводят на монокристаллах размером 0,1—0,5 мм. Использование полихроматич. излучения (метод Лауэ) позволяет получать сведения о симметрии кристалла и ориентировать его правильным образом. Для полного изучения структуры измеряют интенсивность максимально возможного числа рентгеновских дифракц. отражений с использованием монохроматич. излучения чем больше таких отражений, тем больше разрешение пра определении положения атомов. Обработка результатов измерений осуществляется на больших ЭВМ. По интенсивностям отра- [c.506]

    В больщинстве опубликованных работ, посвященных полимерам с жидкокристаллическим взаимодействием боковых групп, рассматривается влияние координационного и ориентационного порядков (на молекулярном и надмолекулярном уровнях) на кинетику реакций систем. Что касается анализа существующей структуры в исходной мономерной и полимерной фазах, то по этой теме опубликовано очень немного детальных работ. Для характеристики структуры использовались главным образо1М методы исследования с помошью поляризационного микроскопа и дифракции рентгеноваких лучей. Анализ рентгенограмм дает.информацию о типе жидкокристаллического порядка в полимере, о расположении боковых групп и их ориентации на молекулярном уровне, ес- [c.41]

    Дифракция рентгеновских лучей и электронов относится к числу наиболее широко используемых методов изучения структуры кристаллических твердых тел. Данные рентгеноструктурного аналиж порошков и монокристаллов приводятся во многих работах по цеолитам. В последнее время большее распространение получило изучение дифракции электронов. Структурные исследования цеолитов, выполи ненные в предыдушие десять лет, привели к пониманию того, что ИК-спектроскопия может давать информацию не только о ближнем порядке и характеристиках связи, но и о дальнем порядке в кристаллических твердых телах. Последнее связано со взаимодействиями в решетке и электростатическими и другими эффектами. Все это характеризует ИК-спектроскопию как очень быстрый и эффективный метод исследования структуры. [c.104]

    Ко времени первого опубликования этих результатов (основанных на спектрах комбинационного рассеяния С Нв и СбОб [102]) Кокс и Смит [25], используя современные методы исследования структуры молекул при помощи рентгеновских лучей, получили для С — С расстояния в кристаллическом бензоле при—3°С величину 1,378 + 0,0033 А. Эти величины отличаются на 0,02 А от данных, полученных из спектров комбинационного рассеяния для свободных молекул, и некоторое время такое расхождение представлялось очень важным. Это привело к пересмотру результатов, полученных при помощи рентгеновских лучей, и к последующему открытию того факта, что тепловые колебания в плоскости молекулы заметно ангармоничны [261. Были найдены угловые колебания всей молекулы (или либрации) вокруг оси шестого порядка со сравнительно большой (8°) среднеквадратичной амплитудой. Из-за таких движений максимумы, возникающие вследствие усредненного по времени электронного распределения атомов углерода, проявились на снимке ближе к центру вращения, что и привело к некоторому кажущемуся укорочению расстояния С—С. Величина этой поправки (около 0,015 А), прибавленная к полученному авторами значению [26], приводит к значению расстояния С—С в бензоле, равному 1,392 А, что очень близко к спектроскопической величине . [c.170]

    Все предложенные различными исследователями модели структуры воды в жидком состоянии должны отвечать результатам измерений малоуглового рассеяния рентгеновских лучей и медленных нейтронов в воде, согласовываться с результатами, полученными другими методами исследования, и объяснять не только физические свойства воды (плотность, вязкость, диэлектрическую проницаемость и др.), но и ее растворяющую способность. К таким моделям относятся различные варианты кластерных структур, предложенные Немети и Шерага [3], Френком И Веном [4] и другими, модель льдоподобных пустот Самойлову [5], а также модели, учитывающие аналогию между составом тазогидратов и клатратов ряда органических молекул в вод-/йых растворах. [c.9]

    В этом разделе рассмотрены методы, основанные на дифракции рентгеновских лучей, электронов и нейтронов. При выборе метода исследования нужно помнить, что наиболее точным методом определения межъядерных расстояний в индивидуальных молекулах будет тот, который использует дифракцию излучения с длиной волны, сравнимой с размерами молекул. Длина волны рентгеновских лучей и нейтронов находится в области от -0,7 до 2,5 A, а область длин волн электронов —от 0,05 до 0,07 A. По-видимому, наиболее приемлемым методом определения структуры является метод, основанный на дифракции рентгеновских лучей. Начало его применению положила работа Брэгга, который в 1912 г. определил строение Na l, K l и ZnS, направляя пучок монохроматических рентгеновских лучей на кристаллы этих соединений. [c.290]

    Очевидно, что сведения, которые можно получить с помощью функции Паттерсона, недостаточны для определения полной структуры кристалла. В случае простых структур с помощью этой функции можно в значительной степени ограничить количество возможных положений атомов в элементарной ячейке и таким образом исключить многие неудачные исходные предположения в методе проб и ошибок, используемом для вычисления распределения электронной плотности. Для более сложных структур, таких, как макромолекулярные кристаллы, нет смысла прибегать к помощи функций Паттерсона, поскольку она не вносит в этом случае каких-либо существенных ограничений. Один из методов исследования таких кристаллов, приведенный в следующем разделе, заключается в сравнении дифракционных картин исследуемого и какого-нибудь изоморфного кристалла, в элементарной ячейке которого содержится небольшое число тяжелых атомов металла. Огновное различие между двумя картинами будет обусловлено дифракционными максимумами, возникающими при рассеянии рентгеновских лучей тяжелыми атомами. Поскольку число тяжелых атомов мало, функцию Паттерсона вполне можно использовать для определения положений этих атомов. [c.51]


Библиография для Структура, методы исследования лучей: [c.597]   
Смотреть страницы где упоминается термин Структура, методы исследования лучей: [c.191]    [c.506]    [c.145]    [c.21]    [c.463]    [c.186]    [c.167]    [c.179]    [c.180]    [c.284]    [c.594]    [c.167]    [c.362]    [c.53]   
Кристаллизация полимеров (1968) -- [ c.65 , c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Метод структур



© 2025 chem21.info Реклама на сайте