Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура серной кислоты

    Аппаратура Серная кислота, о ц Селен, Р ) [c.343]

    Для сульфирования ароматических соединений применяют главным образом концентрированную серную кислоту, олеум и серный ангидрид. Сульфирование ароматических соединений проводят в аппаратах периодического действия с мешалками и охлаждающими рубашками, змеевиками или с дополнительной выносной теплообменной аппаратурой. В многотоннажных производствах процессы сульфирования проводят непрерывна в каскаде реакторов с мешалками. В реакторах поддерживают различную температуру в соответствии с изменением концентрации и готовности сульфирующего агента. [c.109]


    При реальном процессе сульфирования серной кислотой выделяется примерно вдвое больше тепла, что обусловлено дополнительным тепловым эффектом от разбавления серной кислоты, выделяющейся в процессе сульфирования реакционной водой. Поэтому основная опасность ведения процессов сульфирования связана с возможностью перегрева реакционной массы вследствие недостаточно эффективного отвода тепла с последующим быстрым возрастанием давления в сульфураторах и выбросом реакционной массы из аппаратуры, что может сопровождаться ее разрушением. [c.109]

    С целью удаления из перекиси водорода серной кислоты, вызывающей коррозию аппаратуры, раствор перекиси водорода нейтрализуют электрохимическим методом, а затем химическим с помощью раствора аммиака. Чтобы предупредить разложение пере- [c.130]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]

    С эксплуатационной точки зрения процесс с использованием жидкой серной кислоты более сложен. Концентрация кислоты является решающим фактором, поэтому необходимо поддерживать ее в определенных узких пределах (именно ниже 90%, температура 40°) во избея апие сульфирования ароматических и олефиновых углеводородов. Сульфирование кумола идет легче, чем бензола. Серьезным фактором становится также коррозия аппаратуры особенно в тех местах, где скорость потока большая. На рис. 8 показана упрощенная технологическая схема. [c.500]


    Аппаратуру установок сульфирования изготавливают из чугуна (при сульфировании серной кислотой) и из стали (когда применяют олеум). [c.326]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Попадание раствора сернокислого алюминия в рассол обнаруживается понижением величины его pH. Раствор сернокислого алюминия, подкисленный серной кислотой, является очень агрессивной средой, следовательно, и рассол с некоторым количеством этого раствора становится более агрессивным. Если такой рассол циркулирует между аммиачно-холодильной и формовочной установками, он быстро выводит из строя всю систему рассолопроводов. Необходимо остановить формование, прекратить циркуляцию рассола и подачу рабочего раствора сернокислого алюминия в холодильник. При незначительном подкислении в рассол добавляют щелочь при сильном — рассол полностью спускают в канализацию, систему рассолопроводов и аппаратуру холодильной установки тщательно промывают водой. Пока устраняют дефект в холодильнике, приготавливают свежий рассол. [c.50]

    Отмеченные выше недостатки сернокислотного способа привели к разработке методов прямой гидратации олефинов, состояш,ей в непосредственном присоединении воды по двойной связи в присутствии кислотных катализаторов. Их преимущества состоят в одно-стадийности процесса, отсутствии расхода серной кислоты или установок по ее регенерации, более высоком выходе спирта ( 95%), меньшей коррозии аппаратуры. [c.191]

    Применение серной кислоты в промышленности осложнено коррозией аппаратуры, большим расходом реагентов и нейтрализующих вещ,еств, образованием сульфоэфиров, а также боль-I шим количеством сточных вод и вредных выбросов в атмосферу, сложной технологией и т. д. [c.22]

    Метод облагораживания нефтепродуктов путем очистки серной кислотой был весьма распространен. Однако он имел следующие недостатки большая длительность отстоя кислых гудронов, а также отработанных щелочей и промывных вод в стадии нейтрализации, в связи с чем (а также из-за образования относительно стойких эмульсий) требовалось иметь большие емкости для отстоя коррозия аппаратуры невозможность использования кислого гудрона. Поэтому очистка серной кислотой была заменена другими методами. [c.186]

    Отработанная разбавленная серная кислота (70%-ная) вытекает из нижней части колонны и поступает без охлаждения непосредственно на упаривание. Расход серной кислоты составляет 3—4 т на 1 т азотной кислоты. Для возврата отработанной серной кислоты в процесс ее следует концентрировать до купоросного масла. Это связано с большим расходом топлива, безвозвратными потерями некоторого количества серной кислоты и с сильной коррозией аппаратуры. В настоящее время поэтому в промышленности широко применяется метод прямого синтеза концентрированной азотной кислоты и осваивается метод концентрирования разбавленной азотной кислоты перегонкой в присутствии Mg(NOз)2, используемой в качестве водоотнимающей соли. [c.111]

    Извлечение из аппаратуры контактного производства серной кислоты (отстойников, электрофильтров, холодильников) и обогащение [c.141]

    Насыщенный хемосорбент (нижняя фаза из Е-1) вначале поступает на колонну-дегазатор К-2, где выделяются физически растворенные углеводороды С4, которые возвращаются в процесс. Стабилизированный поток направляется на колонну-регенератор К-3. В нижнюю часть этой колонны подается острый дар, играющий одновременно роль теплоносителя и разбавителя. В колонне К-3 происходит гидролиз изобутилсерной кислоты и дегидратация ТМК. Из нижней части колонны выходит 45— )%-ная кислота, которая подвергается упарке под атмосферным давлением или под вакуумом в концентраторе К-4 (содержание кислоты доводится до начального— 60— 65%). Выходящие с верха колонны пары, содержащие кроме изобутилена воду, ТМК, олигомеры и унесенную кислоту, промываются горячим водным раствором щелочи в скруббере К-5 и частично конденсируются в теплообменнике Т-3, откуда конденсат поступает в отстойник Е-3. Жидкая фаза из Е-3, представляющая собой водный раствор ТМК с примесью олигомеров, направляется на колонну выделения ТМК (на схеме не показана), откуда ТМК возвращается в регенератор К-3. Пары изобутилена из емкости -5 проходят дополнительную водную отмывку в скруббере и поступают во всасывающий коллектор компрессора Н-3. Сжиженный продукт подвергается осушке и ректификации, после чего используется по назначению. На практике извлечение изобутилена проводится как в две, так и в три ступени. Вместо насосов-смесителей Н-1 и Н-2 могут применяться реакторы с мешалками, в том числе типа Вишневского, а также смесители инжекционного типа. Существенную сложность представляет узел концентрирования серной кислоты, аппаратура которого изготавливается нз тантала, графита, свинца или хастеллоя (в % (масс.) N1 — 85 Л — И Си — 4]. Остальное оборудование практически полностью изготовляется из обычной углеродистой стали. [c.299]


    Ряд преимуществ имеет фильтрационный метод нейтрализации — простота обслуживания, отсутствие аппаратуры для дозирования реагентов. При содержании серной кислоты в сточной воде 5 г/л можно использовать в качестве фильтрационного материала доломит или магнезит. Различные типы известняка для эти целей можно использовать только при содержании серной кислоты не более 2 г/л. [c.337]

    Процесс осуществляется главным образом нитрующими смесями, состоящими из азотной и серной кислот. Серная кислота выступает в роли катализатора, водоотнимающего средства, а также препятствует протеканию окислительных процессов. Использование нитрующих смесей имеет еще то преимущество, что они в меньшей степени корродируют аппаратуру, чем свободная азотная кислота. [c.436]

    Реактивы, посуда, аппаратура. Серная кислота H2SO4 - 0.0025М титрованный раствор. Хлорид бария ВаСЬ-гНзО - насыщенный раствор. Жепатин -свежеприготовленный 0,5%-й раствор. [c.185]

    Серьезными недостатками процесса являются коррозия аппаратуры серной кислотой, регенерация отработанного катализатора. К недостаткам процесса относится также сравнительно высокий выход диалкилбензо-лов и полиалкилбензолов (деалкилирования не наблюдается). [c.106]

    Н Ю даже из специальных сталей. Напрнмер, в цехах концеитри-р( вания азотной кислоты серная кислота не дает возможности применять аппаратуру из хромоникелевой стали. Поэтому устанавливаемые в этих цехах аппараты, изготовленные из углеродистой стали, защищают от коррозии силикатиой футеровкой. [c.70]

    В настоящее время всеобщее распространение в промышленности различных стран получил способ производства ди( нилолпропана путем конденсации фенола с ацетоном в присутствии кислотных катализаторов (хлористый водород, соляная и серная кислоты). Однако большим недостатком этих способов является высокая агрессивность сред, что особенно относится к использованию хлористого водорода отсюда проистекает трудность подбора соответствующего коррозионностойкого материала для изготовления аппаратуры и трубопроводов. Поэтому в течение ряда лет привлекают внимание бескислотные способы получения продукта. Так, в СССР разработан способ получения дифенилолпропана конденсацией фенола с ацетоном в присутствии ионообменной смолы как катализатора. [c.6]

    На количество образующегося кокса влияет не только химический состав основной массы сырья, но также присутствие небольших количеств асфальтовых соединений. Количество таких соединений может измеряться числом осмоления — количеством вещества, удаляемым серной кислотой [97], или коксовым числом (ASTM D 189-52). Последнее определение можно сделать более чувствительным, если находить коксовое число для 10 %-ной наиболее высококипящей фракции вещества. Если значение коксового числа превышает 0,12%, значит, нри крекинге будет образовываться избыточное количество кокса. В зависимости от характера сырья изменяют режим процесса, причем стараются добиться достаточно высокого выхода бензина при минимальном отложении кокса в аппаратуре. Выбор режима процесса следует связывать также с изменениями в стабильности фракций, которая зависит от соотношения между различными классами углеводородов и от соотношения между гомологами внутри определенного класса. Следует учесть, что, конечно, необходимые изменения в технологии зачастую незначительны. [c.309]

    Использовать смеси НКОз и Нз504 более выгодно, чем большой избыток НЫОд. При большом избытке НЫОз могут образовываться полинитропроизводные, что нежелательно. Серная кислота доступна и ее можно легко регенерировать, кроме того, нитрующая смесь не является коррозионноактивной, что позволяет использовать стальную аппаратуру. Контроль процесса также легче осуществить в этих условиях, устраняя вторичные реакции окисления. Безводную азотную кислоту для нитрующей смеси получают обработкой нитратов натрия или калия избытком Н2504. [c.296]

    Еще одна проблема заключается в выборе устойчивого против коррозии разбавленной серной кислотой материала аппаратуры. Эта проблема осложняется в связи со стремлением получить после гидролиза достаточно концентрированную кислоту (75—85 % H2SO4), так как здесь приходится идти по пути относительно высоких температур (до 200 °С) и усложнения гидролизационной аппаратуры. [c.24]

    Однако на первый взгляд эта идея практически неосуществима. В самом деле, Н2304 при обычных условиях кинит с разложением при 335, а этилсер-пая кислота разлагается (вне условий катализа) при 160—170 °С [11]. Следовательно, при атмосферном давлении реакция между этиленом и серной кислотой в паровой фазе невозможна. Для понижения температуры кипения,, а следовательно, и температуры паров Н28 04 можно было бы использовать вакуум но даже в вакууме вряд ли удалось бы найти условия существования моноэтилового эфира серной кислоты, так как в результате применения железа в качестве материала для реакционной аппаратуры можно ожидать понижения температуры разложения этилсерной кислоты, как и в присутствии Си, Ag, N1, когда распад этилсерной кислоты начинается уже при 100 °С. [c.28]

    Методика анализа непредельной части газа разработана недостаточно. Фракщюнировапная разгонка сжиженного -газа является лучшим способом анализа, но требует специальной аппаратуры. Метод поглощения отдельных комионентов серной кислотой различных концентраций, описанный мной в 1925 ь (439) и разработанный затем Марковичем и Моор в 1930 г. (440), состоит в том, что определенный объем газа последовательно обрабатывается серной кислотой возрастающих концентраций. Изменение объема таза наблюдается каждые пять минут до тех пор, пока уменьшение объема газа не станет равномерным и незначительным. [c.388]

    В эмульсионном катализе контакт реагирующих веществ с катализатором часто не ограничивается только зоной реактора, а продолжается и в отстойной аппаратуре с понижающейся интенсивностью в течение всего времени разложения эмульсии. При этом в связи с непрерывным изменением условий контакта возможно и изменение направления или усиление отдельных реакций. Применительно к эмульсионному процессу сернокислотного алкилирования был изучен характер разложения эмульсии во времени. Как правило, выделение углеводородной фазы из эмульсии серная кислота — углеводороды происходит во времени неразномерно. О/бычно наблюдается три характерных этапа началь- [c.83]

    При том же, что и в предыдущем случае, качественном составе параметров была сформулирована задача оптимизации работы полученного агрегата с учетом факторов неопределенности информации. Всего было выделено 11 точечных и 19 неопределенных параметров. Под точечными понимаются такие параметры, которые полностью соответствуют детерминированным оптимизирующим переменным традиционной оптимизации. В качестве примера таких параметров можно привестп объемы загрузок контактной массы, площади поверхности теплообменной аппаратуры и др. В результате решения поставленной задачи для четырехслойной системы производства серной кислоты из серы под давлением были получены оптимальные значения параметров технологических потоков ХТС (расходы, температуры, давления, [c.277]

    Тантал издавна применяется при производстве электрических лампочек кроме того, в настоящее время его начали применять при изготовлении химической аппаратуры в качестве материала, весьма устойчивого в отношении коррозии. Это—единственный металл, устойчивый к действию соляной кислоты. Тантал обычно встречается вместе с ниобием, который получил применение в атомных реакторах. Благодаря растущей потребности интерес к обоим металлам непрерывно увеличивается. В последние годы разработаны промышленные методы разделения, основанные на фракционированной экстракции по ним получают оба металла высокой степени чистоты. Эти методы гораздо производительнее, чем классический кристаллизационный метод Мариньяка [494] или другой промышленный метод [493] осаждения фторотанталата калия и фторониоби-ата калия из разбавленной фтористоводородной кислоты. По экстракционным методам оба металла переводятся в окисные или хлористые соединения, растворяются во фтористоводородной, соляной или серной кислоте и экстрагируются одним органическим растворителем или смесью из нескольких. [c.449]

    Рза] Ц11ю алкилирования ведут в аппаратуре, описанной для алкилирования фенола в присутствии серной кислоты (см. рис. 81). [c.382]

    Алюминий стоек в разбавленной серной кислоте, в концентрированной при 20° Сив высокопроцентном олеуме при температуре 200° С. В частности, в производстве хлорсульфоиовой кислоты аппаратура для разложения олеума может быть изготовлена из алюминия. Наиболее опасными для алюминия являются средние концентрации серной кислоты (рис. 183). [c.268]

    Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими сво11ствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свипца и хромоннкелевых сталей, в 3—5 раз. По этой причине примепеиие графита особенно эффективно для изготовления из пего тенлообмепной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико- [c.449]

    Триоксид серы, образовавшийся в результате каталитического окисления, поглощают и гидратируют в одной или нескольких закрытых башнях, орошаемых серной кислотой, Целе-сообразно использовать 98—99%-ную Н2504, так как она является азеотропом, имеющим минимальное общее давление паров. При более низких концентрациях кислоты образуются кислотные аэрозоли или туманы за счет взаимодействия ЗОз и паров воды, а при более высоких концентрациях становятся значительными потери 50з и Н2504. В любом случае газ, выходящий из абсорбционной башни, может вызвать коррозию аппаратуры, через которую он проходит, или обусловить нежелательные выбросы в атмосферу. Для поддержания водного баланса и нужной концентрации серной кислоты ее обычно используют в качестве осущающего агента для входящего ЗОг или воздуха и затем обменивают с кислотой, применяемой для абсорбции ЗОз. [c.239]

    Для отсоса газа из печей и транспортирования его через аппаратуру устаггавливается эксгаустер (турбогазодувка). Аммиак, остающийся в газе после холодильников, улавливается в сатураторе серной кислотой, которая взаимодействует с аммиаком, давая [c.44]

    Контактное производство серной кислоты — это крупномасштабное непрерывное, механизированное производство. В настоящее время проводится комплексная автоматизации контактных цехов. Расходные коэффициенты при производстве серной кислоты из колчедана на 1 т моногидрата N2804 составляют примерно условного (45%5) колчедана 0,82 т, электроэнергии 82 кВт-ч, воды 50 м . Себестоимость кислоты составляет 14—16 руб. за 1 т, в том числе стоимость колчедана составляет в среднем почти 50% от всей стоимости кислоты. Уровень механизации таков, что зарплата основных рабочих составляет лишь около 5% себестоимости кислоты. Важнейшие тенденции развития производства серной кислоты типичны для многих химических производств. 1. Увеличение мощности аппаратуры при одновременной комплексной автоматизации производства. 2. Интенсификация процессов путем применения реакторов кипящего слоя (печи и контактные аппараты КС) и активных катализаторов, а также производства и переработки концентрированного диоксида с использованием кислорода. 3. Разработка энерготехнологических систем с максимальным использованием теплоты экзотермических реакций, в том числе циклических и систем под давлением. 4. Увеличение степеней превращения на всех стадиях производства для снижения расходных коэффициентов по сырью н уменьшению вредных выбросов. 5. Использование сернистых соединений (5, 50о, 80з, НгЗ) из технологических и отходящих газов, а также жидких отходов других производств. 6. Обезвреживание отходящих газов и сточных вод. [c.138]


Смотреть страницы где упоминается термин Аппаратура серной кислоты: [c.528]    [c.231]    [c.113]    [c.101]    [c.291]    [c.19]    [c.21]    [c.23]    [c.399]    [c.615]    [c.228]    [c.587]    [c.113]    [c.134]    [c.134]    [c.300]   
Технология серной кислоты (1950) -- [ c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура для концентрирования серной кислоты

Аппаратура для смешения п разбавления серной кислоты и олеума

Аппаратура для улавливания тумана серной кислоты

Аппаратура производства серной кислоты

Аппаратура производства серной кислоты контактным способом

Аппаратура производства серной кислоты нитрозным способом

Аппаратура процессов конденсации, протекающих в присутствии серной кислоты

Башенная серная кислота, производство аппаратура

Защита от коррозии аппаратуры и оборудования в производстве серной кислоты из сероводорода

Контактная серная кислота, производство аппаратура

Материалы для аппаратуры, применяемой в производстве серной кислоты

Общие положения. Аппаратура, применяемая для предварительной обработки хлористого цинка и проведения процессов конденсации Аппаратура процессов конденсации, протекающих в присутствии серной кислоты

Производство серной кислоты выбор аппаратуры катализаторы

Разбавление и смешение серной кислоты. Материальный баланс смешения кислот. Тепловой баланс смешения кислот Аппаратура для смешения и разбавления серной кислоты и олеума, Сульфураторы

ТЕХНОЛОГИЧЕСКАЯ СХЕМА И АППАРАТУРА ПРОИЗВОДСТВА СЕРНОЙ КИСЛОТЫ БАШЕННЫМ МЕТОДОМ



© 2025 chem21.info Реклама на сайте