Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура для концентрирования серной кислоты

    Для сульфирования ароматических соединений применяют главным образом концентрированную серную кислоту, олеум и серный ангидрид. Сульфирование ароматических соединений проводят в аппаратах периодического действия с мешалками и охлаждающими рубашками, змеевиками или с дополнительной выносной теплообменной аппаратурой. В многотоннажных производствах процессы сульфирования проводят непрерывна в каскаде реакторов с мешалками. В реакторах поддерживают различную температуру в соответствии с изменением концентрации и готовности сульфирующего агента. [c.109]


    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]

    Насыщенный хемосорбент (нижняя фаза из Е-1) вначале поступает на колонну-дегазатор К-2, где выделяются физически растворенные углеводороды С4, которые возвращаются в процесс. Стабилизированный поток направляется на колонну-регенератор К-3. В нижнюю часть этой колонны подается острый дар, играющий одновременно роль теплоносителя и разбавителя. В колонне К-3 происходит гидролиз изобутилсерной кислоты и дегидратация ТМК. Из нижней части колонны выходит 45— )%-ная кислота, которая подвергается упарке под атмосферным давлением или под вакуумом в концентраторе К-4 (содержание кислоты доводится до начального— 60— 65%). Выходящие с верха колонны пары, содержащие кроме изобутилена воду, ТМК, олигомеры и унесенную кислоту, промываются горячим водным раствором щелочи в скруббере К-5 и частично конденсируются в теплообменнике Т-3, откуда конденсат поступает в отстойник Е-3. Жидкая фаза из Е-3, представляющая собой водный раствор ТМК с примесью олигомеров, направляется на колонну выделения ТМК (на схеме не показана), откуда ТМК возвращается в регенератор К-3. Пары изобутилена из емкости -5 проходят дополнительную водную отмывку в скруббере и поступают во всасывающий коллектор компрессора Н-3. Сжиженный продукт подвергается осушке и ректификации, после чего используется по назначению. На практике извлечение изобутилена проводится как в две, так и в три ступени. Вместо насосов-смесителей Н-1 и Н-2 могут применяться реакторы с мешалками, в том числе типа Вишневского, а также смесители инжекционного типа. Существенную сложность представляет узел концентрирования серной кислоты, аппаратура которого изготавливается нз тантала, графита, свинца или хастеллоя (в % (масс.) N1 — 85 Л — И Си — 4]. Остальное оборудование практически полностью изготовляется из обычной углеродистой стали. [c.299]


    Как показали исследования [68, 69], окисление нафталиновой фракции во фталевый ангидрид можно проводить после выделения фенолов, оснований, а также части непредельных соединений и азотсодержащих веществ. Последние способны снижать активность катализатора и образовывать смолистые вещества, загрязняющие аппаратуру цехов окисления. Разработан и в течение ряда лет эксплуатируется промышленный метод, основанный на предварительной обработке концентрированной серной кислотой нафталиновой фракции, свободной от фенолов и оснований. При этом полимеризуются индол и непредельные соединения. Полученный при последующей дистилляции этой фракции дистиллированный нафталин является отличным сырьем для синтеза фталевого ангидрида [69]. Он содержит 93% нафталина, 1,1 % тионафтена (смола из углей Кузбасса), около 5% метилнафталинов и 0,3% непредельных соединений индол в нем отсутствует. Увеличение содержания метилнафталинов до 7—9% при одновременном снижении содержания нафталина до 89- 0% благоприятно влияет на окисление сырья во фталевый ангидрид [70, с. 190]. [c.170]

    Давление в процессе конденсации обычно не превышает 2 ати и практически не оказывает влияния на конструкцию аппаратуры. -Аппараты, применяемые для конденсации в присутствии серной кислоты, рассчитывают лишь на давление 2—3 а/ли, создаваемое в них при эвакуации реакционной массы сжатым воздухом. По коррозионному воздействию ингредиенты, участвующие в процессе конденсации, соответствуют концентрированной серной кислоте, слабо действующей на черные металлы, которые и применяются для изготовления реакторов рассматриваемого типа. [c.347]

    Недостатки способа сернокислотной гидратации — необходимость затрат на регенерацию (концентрирование серной кислоты), иа защиту аппаратуры от коррозии. Поэтому более перспективен способ прямой гидратации олефинов. Этот способ освоен нашей промышленностью, наибольшее количество синтетического этило. [c.160]

    Приведенная реакция, пригодная для открытия малых количеств борной кислоты и ее солей, обладает некоторыми преимуществами по сравнению с другими качественными реакциями на ВО. -ионы, например не требуется прибавления концентрированной серной кислоты и спирта реакция применима и присутствии фторидов, затрудняющих открытие ВО -ионов другими методами не требуется сложной аппаратуры реакция проста в выполнении. [c.410]

    Андезит Горные породы, состоящие из нескольких минералов. Обладают исключительно высокой химической стойкостью против минеральных кислот любых концентраций при любых температурах, включая <600 Абсорбционные башни в производстве соляной и азотной кислот аппаратура для получения купоросного масла и корпуса электрофильтров в установках для концентрирования серной кислоты. [c.197]

    Применение воздуха вместо кислорода. Если в качестве источника кислорода используется воздух, то процентное содержание озона в отходящих из трубок Бертло газах будет ниже, чем при применении чистого кислорода. Эти газы содержат также небольшие количества азотного ангидрида , присутствие которого может повести к некоторым побочным реакциям. И все же значительное количество соединений успешно озонируют, пользуясь воздухом в качестве источника кислорода. Описанная выше аппаратура может удовлетворительно работать со сжатым воздухом. Очень важно, чтобы последний до пропускания его через систему очистки Б, В, Г, Д, Е, Ж был подвергнут барботированию через три 5-литровые колбы, наполовину заполненные концентрированной серной кислотой. Некоторые данные о получении озона из воздуха при напряжении во вторичной обмотке, равном 10 ООО в, приводятся в табл. 3. [c.391]

    Если в аппаратуру должен поступать сухой воздух, то его пропускают через поглотительное устройство, размеры и наполнение которого зависят от требуемой степени высушивания (см. раздел, посвященный осушению газов, стр. 577). Часто достаточно пропустить воздух через концентрированную серную кислоту или через трубку с хлористым кальцием или едким кали. Гидроокиси щелочных металлов одновременно поглощают из воздуха углекислый газ. Поэтому они особенно пригодны при работе с веществами [c.637]

    Высокий коэффициент экстракции и эффективное удаление фтористых соединений могут быть получены при поддержании уменьшенной концентрации кислоты в растворе для уменьшения коррозии. При этом пыль подвергается двустадийной обработке, сначала минимальным количеством концентрированной серной кислоты, а далее проводится выщелачивание сульфатов водой. Используется такое количество 94 %-ной серной кислоты, которое достаточно для перевода соединений металлов в сульфаты и создания концентрации свободной кислоты в получающемся растворе около 1—4%, При этом полностью устраняется необходимость использовать специальную коррозионноустойчивую аппаратуру. [c.158]


    Силанизация аппаратуры. Внутренние стеклянные поверхности нового прибора для отгоики воды (см. рис. 5-7, б) моют раствором дихромата калия в концентрированной серной кислоте, ополаскивают дистиллированной водой и в течение 1 ч обрабатывают спиртовым раствором гидроксида калия. Далее прибор последовательно ополаскивают спиртом, концентрированной азотной кислотой и дистиллированной водой. Затем в течение 3 ч пропускают чистый влажный водяной пар, после чего сушат прибор струей профильтрованного воздуха. Чистый сухой прибор заполняют 2—3%-ным раствором силиконовой жидкости в четыреххлористом углероде. Через 30 мин раствор сливают, сушат прибор при 110 С для удаления следов растворителя и после этого прогревают 2 ч при 250— 275 °С. Для равномерного покрытия обработку силиконом повторяют еще раз. Если прибор после каждого цикла отгонки воды ополаскивают толуолом, содержащим немного силиконовой смазки, то его поверхность остается неизменной в течение нескольких месяцев. [c.291]

    Разведенная серная кислота (концентрации ниже 75%) реагирует с большинством металлов. Она довольно быстро разъедает железо, углеродистую сталь, цинк. Концентрированная серная кислота на металлы не действует. Поэтому ее ожно хранить в железных баках и при работе с ней пользоваться железной аппаратурой, применять железные трубопроводы. [c.170]

    Концентрирование фосфорной кислоты осложнено коррозией аппаратуры и выпадением осадков сульфата кальция и других примесей на греющих поверхностях. Поэтому чаще всего для концентрирования фосфорной кислоты применяют барабанные барботажные концентраторы, в которых нагрев производится непосредственным соприкосновением упариваемой кислоты с топочными газами, так же, как при концентрировании серной кислоты (см. рис. 68). [c.288]

    Собрать аппаратуру (рис. 112). В колбу Вюрца 1 поместить хлористый натрий. В промывалки 2 налить концентрированной серной кислоты. В шарик трубки 3 положить небольшое количество хромового ангидрида. Приемник 4 охладить водой со льдом. В стакан 5 налить такое количество воды, чтобы отводная трубка, снабженная воронкой, не погружалась в воду. [c.208]

    Аппаратура, материалы и реактивы. Приборы согласно рис. 26 и 27, цилиндры мерные емкостью от 250 до 500 мл, термометр, барометр. Раствор поваренной соли (25%) для заполнения прибора, перманганат калия, мрамор кусковой, соляная кислота 1 6. Концентрированная серная кислота, насыщенный раствор бикарбоната калия. [c.42]

    Вся аппаратура для проведения реакции в потоке газа должна быть ти ательно проверена перед использованием. Особенно опасными бывают неправильно присоединенные промывные склянки, так как при пропускании газа их содержимое (например, концентрированная серная кислота) может быть- выброшено из прибора. Между промывными склянками с и елочами и кислотами в схему необходимо всегда включать пустую склянку. Все промывные склянки должны быть плотно закрыты и для предотвращения случайного открывания снабжены металлическими (из проволоки) пружинами (рис. 13). Кроме того, необходимо, чтобы реакционный сосуд свободно сообщался с атмосферой, тогда в нем не возникнет избыточное давление. Заполненные хлоркальциевые трубки всегда следует проверять, пропускают ли они газ. [c.28]

    Для очистки кислорода применяют химические методы — промывку концентрированными растворами перманганата кадия, едкого кали и концентрированной серной кислотой. Окончательную очистку кислорода проводят методом повторной фракционированной дистилляции в вакууме при темоературе жидкого азота. Перед конденсацией га высушивают, прбпускйя его через пятиокись фосфора. При каждой дистилляции отбрасывают первую и, последнюю фракции. Применяемые аппаратура и методика описаны а етр. 313. [c.103]

    При дегидратации этилового спирта концентрированной серной кислотой ярименяют ту же аппаратуру, что и при иополь-аовании в качестве водоотнимающего средства фосфорной кислоты. После того как из установки полностью удален воздух, в колбу вводят свежеприготовленную омесь ЗА мл абсолютного этилового опирта и 90 мл концентрироваиной серной кислоты и добавляют 25 г обезвоженного сульфата алюминия. [c.336]

    При дегидратации этилового спирта концентрированной серной кислотой ярименяют ту же аппаратуру, что и при использовании в качестве водоотнимающего средства фосфорной кислоты. После того как из установки полностью удален воздух, в колбу вводят свежеприготовленную омесь 30 мл абсолютного [c.336]

    ПФК часто применяют вместо таких гораздо более сильных кислотных реагентов, как хлористый алюминий и кон-цёнтрированная серная кислота. При обработке ПФК соединений, содержащих группы, чувствительные к действию более жестких реагентов, например сложноэфирную группировку, не происхрдит побочных реакций. К другим преимуществам ПФК по сравнению с концентрированной серной кислотой относится то, что ПФК не обладает заметным окислительным действием и лишь в незначительной степени проявляет склонность к замещению атомов водорода в ароматическом ядре или не проявляет ее вообще. Преимущества ПФК перед фтористым водородом, в особенности для циклизации арилзамещенных карбоновых кислот, заключаются в том, что с ПФК можно работать без особых мер предосторожности й, следовательно, в простой аппаратуре. Например, при получении а-тетралона из -j-фенилмасляной кислоты и ПФК. как описано в Синтезах органических препаратов [155], требуются только стакан и мешалка. [c.51]

    Реакцию проводят в колбе со шлифами, снабженной трубками для ввода и вывода газа. Отводная трубка соединена с несколькими последовательно подключенными ловушками. Через вводную трубку пропускают сухой H I, который предварительно сушат над Р4О10 либо получают из твердого хлорида натрия и концентрированной серной кислоты. В колбу помещают осажденный GeS, высушенный в вакууме. Первую ловушку охлаждают жидким воздухом. При введении НС реакция начинается самопроизвольно. После окончания опыта ввод H I перекрывают, а аппаратуру вакуумируют. Все летучие продукты реакции конденсируются в ловушке, охлаждаемой жидким воздухом. После этого третью ловушку охлаждают жидким воздухом, а первую —до —78 С. Когда H2S и НС будут удалены полностью, вторую ловушку охлаждают жидким воздухом, а первую нагревают до —45 С. Продукт оставляют на 2 ч под вакуумом, в результате чего из негв> удаляются нерастворившиеся газы, затем продукт фракционируют в вакууме и перегоняют в ампулы. [c.794]

    Метод основан на минерализации полимера в концентрированной серной кислоте в присутствии пероксида водорода и фо-тометрировании полученного фосформолибденового комплекса, восстановленного аскорбиновой кислотой в присутствии катализатора, при 670 нм. Предел обнаружения — 1 мкг фосфора в 25 мл фотометрируемого раствора [или 5-10 % (масс.) в полимере]. Аппаратура и реактивы — см. гл. 1, разд. Фотометрическое определение фосфора . [c.173]

    Природные кис-лотоупоры (горные породы) Андезит и бештаунит 800 Абсорбционные башни в производстве соляной и азотной кислот, аппаратура для получения купоросного масла и корпуса электрофильтров в установках для концентрирования серной кислоты Футеровочный материал для абсорбционных, сушильных и поглотительных башен при нитрозном и контактном способах получения серной кислоты и для аппаратов, подверженных воздействию агрессивных кислот и газов при высоких температурах [c.64]

    Возможность гидратации этилена с помощью концентрированной серной кислоты в две стадии — образование этил- или диэтилсульфатов и их гидролиз с образованием этилового спирта и выделением разбавленной серной кислоты была установлена учеными еще в начале прошлото века. А. М. Бутлеров предсказывал большое будущее синтетическому этиловому спирту. Начиная с 30-х годов, параллельно с развитием промышленного производства синтетического этилового спирта сернокислотной гидратацией этилена, проводились интенсивные исследования для разработки способа прямой гидратации этилена в спирт в одну стадию. Необходимость в развитии этого направления была вызвана тем, что производство этилового спирта сернокислотной гидратацией связано с большим расходом серной кислоты, сильной коррозией аппаратуры, плохими санитарными условиями труда и т. д. [c.101]

    Приготовление специфических реагентов обычно не представляет особых затруднений. При проведении реакций в хроматографической схеме селективные реагенты наносят на поверхность инертного твердого носителя, используя известные приемы для нанесения неподвижных н идких фаз. В том случае, когда на твердый носитель необходимо нанести реагент, взаимодей-ствуюший с водой (например, концентрированная серная кислота) или кислородом воздуха, то приготовление реагента следует проводить либо в специальном боксе в защитной газовой атмосфере, либо используя метод нанесения НЖФ на твердый носитель в кипящем слое. Использование носителей, обладающих сильными адсорбционными свойствами, в принципе позволяет применить и легколетучие реактивы [3, 4]. Реакционная способность твердых реагентов может быть увеличена, если их использовать в растворителе (НЖФ), в котором удаляемое вещество хорошо растворимо при температуре эксперимента. Некоторые схемы, используемые в методе вычитания, приведены на рис. У-2. Схема а была предложена в работе [4], схема б — в работе [3]. Это наиболее простые схемы, которые применяют в методе вычитания. Однако для проведения анализа методом вычитания на обычной хроматографической аппаратуре необходимо провести два анализа во-первых, обычный анализ исходной смеси без использования реактора и, во-вторых, анализ невычи-таемых (нереагирующих) компонентов, который проводят на последовательно соединенных колонке и реакторе. Поскольку изменение хроматографической схемы в каждом анализе нецелесообразно, желательно использовать схему, позволяющую более просто реализовать обе стадии анализа. Эту задачу решает схема в [5], которая представляется весьма рациональной для использования в методе вычитания. В качестве примера рассмотрим анализ модельной смеси, состоящей из [c.140]

    Вся аппаратура для проведения реакции в токе газа должна быть тщательно проверена перед использованием. Особенно опасными бывают неправильно присоединенные промывные склянки, так как при пропускании газа их содержимое наприжр, концентрированная серная кислота) может быть выброшено из прибора. Между промывными склянками с щелочами и кислотами всегда необходимо помеищть пустую склянку. Все промывные склянки должны быть плотно закрыты и защищены проволочной пружинкой от случайного открывания см. рис. 14). [c.24]

    Концентрированная серная кислота является окислителем. При нагревании реакционной смеси образуется, кроме этилена и следов эфира (СзН ) , ряд продуктов окисления органических соединений, в частности СО, СО2 и уголь (поэтому жидкость в пробирке чернеет). Серная кислота при этом восстанавливается до сернистого газа, обесцвечивающего растворы брома и КМПО4 подобно этилену. Поэтому образующийся этилен пропускают через натронную известь, связывающую 502 2- Вместо натронной извести можно применять раствор щелочи, однако это требует некоторого усложнения аппаратуры. Удалять из этилена примесь окиси углерода нет необходимости, так как СО не реагирует ни с бромной водой, ни с раствором КМПО4. Реакции этилена с этими реактивами идут по схемам, рассмотренным выше (см. опыты 18 и 19). Яркий цвет пламени этилена и появление сажи при его неполном сгорании обусловлены большим процентным содержанием углерода. [c.86]

    После этого газ необходимо осушить, так как в дальнейшем выделение летучих продуктов осуществляют при низких температурах, когда влага превращается в лед, который может забить трубы и аппаратуру. Осушка газа может быть достигнута путем промыв1Ки его концентрированной серной кислотой (для насыщенных соединений), холодильными рассолами, концентрированными растворами щелочи или вымораживанием. На схеме предус1Мотре-на промывка рассолом (концентрированным водным раствором хлористого. кальция) в осушительной колонне 13 с циркуляцией рассола н его охлаждением в рассольном холодильнике 14. Далее [c.165]

    Промышленное применение прессованного, литого и пропитанного феноло-формальдегидными смолами графита в виде конструкций, а также различных элементов аппаратуры общеизвестно. Однако в высококонцентрированной серной кислоте при температурах 200—250° С указанные материалы становятся проницаемыми. Концентрированная серная кислота разрушает материал пропитки, чему способствует повышенная температура среды (происходит термическое разложение пропитывающего вещества) такой материал вследствие высокой пористости графита (пористость без пропитки достигает 20% и выше) непригоден к эксплуатации. В настоящее время освоены способы получения непроницаемого графита, обладающего высокой химической стойкостью в 50% H2SO4 при температуре кипения [72]. Детали теплообменных аппаратов, изготовленные из графитовых блоков после их пропитки политетрафторэтиленом, становятся непроницаемыми для жидкостей и весьма стойкими в концентрированной серной кислоте [73]. Непроницаемый графит получают различными методами, в частности,— путем погружения графитовых блоков в расплавленный цирконий или кремний [74]. По данным работы [75], пропитка кремнийорганическими веществами типа лаков К-44 и ЭФ-5 позволяет получать непроницаемый графит, устойчивый в 80%-ной H2SO4 при нормальном давлении и температуре 200° С и при давлении 2 атм и температуре 185° С. Перспективным, по-видимому, является также пирографит с углеродистой пленкой, образующейся при обработке графита в углеводородной среде [76]. [c.67]

    В холодильнике купоросное масло, получаемое при производстве концентрированной серной кислоты, охлаждается от 240 до 40° С. Змеевики из свинцовых труб, применявшиеся ранее, интенсивно корродировали и продукты коррозии (РЬ804) забивали коммуникации и аппаратуру. Свинцовый змеевик на входе кислоты разрушался за 10—12 месяцев (220—240°С), на выходе — за 16—18 месяцев (40—50°С). Срок службы змеевика из цельнотянутых труб (углеродистая сталь) не превышал 5—6 месяцев. Опыт использования литья из ферросилида не дал положительных результатов через короткое время на стаканах из ферросилида появлялись трещины, а затем стаканы разрушались. Секции холодильника, выполненные из серого чугуна СЧ 15-24 и СЧ 18-36, оказались удобными в эксплуатации материал отличался достаточно высокой коррозионной стойкостью — продолжительность рабо гы секций до 3 лет. [c.145]

    Бензол со склада поступает в цеховые стальные емкосш, откуда затем его направляют в отделение очистки и дистилляции. По пути бензол проходит щелочной осущитель, изготовленный также из обычной углеродистой стали. Очистка бензола от примесей осуществляется путем обработки серной кислотой. Концентрацию последней поддерживают на уровне 78—80%, что практически гарантирует отсутствие коррозии аппаратуры, изготовленной из черных металлов. Как известно, железо, сталь и чугун в концентрированной серной кислоте корродируют незначительно, но в растворах средних и низких концентраций разрушаются весьма сильно. Это объясняется образованием на поверхности металла прочной, нерастворимой в концентрированной серной кислоте пленки, которая и предохраняет его от дальнейшего разрушения. [c.103]


Смотреть страницы где упоминается термин Аппаратура для концентрирования серной кислоты: [c.134]    [c.141]    [c.427]    [c.175]    [c.125]    [c.771]    [c.219]    [c.401]    [c.853]    [c.163]    [c.75]    [c.436]    [c.85]   
Смотреть главы в:

Технология азотной кислоты Издание 3 -> Аппаратура для концентрирования серной кислоты

Технология азотной кислоты -> Аппаратура для концентрирования серной кислоты




ПОИСК





Смотрите так же термины и статьи:

Аппаратура серной кислоты

Серная кислота концентрированная как



© 2024 chem21.info Реклама на сайте