Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Течение в подводе

    В модернизированных крупнотоннажных УЗК (типа 21 — 10/ 1500 для создания условий, гарантирующих получение электродного кокса стабильного по качеству, предусмотрен подвод дополнительного тепла в коксовые камеры в виде паров тяжелого газойля коксования. Для этой цели часть тяжелого газойля, отбираемого с аккумулятора К — 1, после нагрева в специальных змеевиках печи до температуры 520 °С подают в камеры вместе со вторичным сырьем. Подача перегретого тяжелого газойля в камеры продолжается и после прекращения подачи сырья в течение 6 часов. [c.59]


    Запас инертного газа в газгольдере должен обеспечивать создание инертных подушек в электродержателях, загрузочных течках электропечей и масляных затворах электрофильтров не менее чем в течение 2 ч. Инертный газ должен подводиться к оборудованию по стационарным трубопроводам, рассчитанным на максимальный расход инертного газа каждым потребителем с учетом коэффициента одновременности не менее 0,7. На каждом вводе инертного газа в отделение, а также на каждом ответвлении к определенному оборудованию необходимо установить обратный клапан или гидрозатвор, чтобы предотвратить загрязнение инертного таза взрывоопасными и токсичными производственными газами. На каждом ответвлении должны быть установлены запорный вентиль и расходомер. [c.71]

    В левую часть бюретки забирают точно 80 см газа п закрывают кран левой бюретки в правую часть забирают приблизительно 20 см газа. После стекания жидкости по стенкам в течение 1 мин открывают кран правой части бюретки и подводят уровень жидкости к цифре 18,5 см . Затем кран снова перекрывают и бюретку быстро соединяют с атмосферой, чтобы выпустить избыток газа через кран [c.244]

    Полученное из опыта расслоение характеристик наблюдается у всех колес в области больших производительностей, причем чем больше М , тем меньше значение фа,, соответствующее началу излома линий. Прн таких производительностях течение газа во входных участках косых срезов межлопаточных каналов колес ускоренное или, по крайней мере (при Мц , 1), не сопровождается изменением скорости. В результате во входных сечениях каналов скорость потока достигает звуковой, а при дальнейшем движении в глубь канала за счет подвода энергии может превысить звуковую. Особенностями трансзвукового течения в канале колеса в относительном движении, по-видимому, и объясняется установленное из опыта расслоение зависимостей ф2 (фаг)- Таким образом, в общем случае коэффициент теоретической работы зависит не только от коэффициента расхода, но и от числа Маха, определяющего уровень скоростей при входе в колесо и в межлопаточных каналах. [c.142]

    Подвод потока сверху вниз по отводу 90° без лопаток резко меняет течение при тех же решетках, что и в варианте П-3, поток получается более отклоненным к нижней стенке аппарата. Это отклонение увеличивается при наличии щели между решетками и нижней стенкой аппарата (Мк = 1,25). При закрытии щелей устанавливается более равномерное поле скоростей (Мк 1,10). [c.225]

    В основе первого направления лежит использование МГД-течений в электропроводных жидкостях. Соответствующие устройства подразделяют на кондукционные и индукционные. В кондукционных устройствах электропроводная жидкость (или суспензия) протекает по каналу, располагаемому между полюсами электромагнита. В боковых гранях канала размещены электроды, к которым подводится напряжение от внешнего источника. Возникающие электродинамические силы служат для перемешивания жидких сред. В индукционных устройствах используют переменное магнитное поле, создаваемое обмоткой статора, а жидкость внутри его служит подобием ротора асинхронного двигателя. В результате электромагнитной индукции создается ток и обеспечивается вращательное движение жидкости. Вследствие низкого к. п. д. и больших энергозатрат рассмотренные устройства пока не нашли широкого применения. [c.112]


    Матрица обеспечивает частицам катализатора заданную форму и механическую прочность, способствует отводу тепла от цеолитных кристаллов при регенерации и подводу тепла в реакцию, создает оптимальную вторичную пористую структуру, способствующую диффузии сырья и продуктов реакции, стабилизирует цеолит при термической и термопаровой обработке, моделирующих условия при выжиге кокса в регенераторе. Последнее на примере редкоземельного цеолитного катализатора подтверждается данными табл. 5.1, в которой показано влияние термообработки и матрицы на стабильность цеолитов РЗЭ НУ, ЦСК и АСК при мягкой термообработке смесью воздуха и водяного пара и жесткой термообработке при 850 °С в течение 48 ч. Так, до жесткой термообработки конверсия и выход бензина у чистого цеолита и разбавленного 90% АСК в качестве матрицы практически одинаковы и в два раза больше, чем для одного АСК. После термообработки в жестких условиях конверсия сырья и выход бензина в случае одного цеолита снижается в 10 раз и незначительно меняется в случае цеолитсодержащих (ЦСК) и алюмосиликатных (АСК) катализаторов. [c.111]

    Многие характеристики реактора с кипящим слоем делают крайне желательным его использование для проведения реакций дегидрирования. Прежде всего при высоких температурах реагирующие вещества и продукты очень мало контактируют со стенками реактора. Катализатор находится в контакте с реагирующими веществами и продуктами в течение всего времени реакции, пока он не будет отделен от катализатора. В реакторе с кипящим слоем подвод тепла осуществляется нагретым катализатором. Это позволяет устранить горячие металлические поверхности, которые отрицательно влияют на ход реакции. Для реакторов с кипящим слоем может быть приготовлен специальный катализатор с достаточной термостабильностью и селективностью, позволяющий практически подавить обратные реакции. [c.139]

    Влияние турбулентных пульсаций на перенос вещества учитывается моделью проникновения, получившей широкое распространение за последние 10—15 лет. При использовании этой модели предполагается, что турбулентные пульсации непрерывно подводят к межфазной поверхности свежие порции жидкости и смывают жидкость, уже прореагировавшую с газом. Таким образом, каждый элемент поверхности взаимодействует с газом в течение некоторого времени (время контакта, период обновления), после чего данный элемент поверхности обновляется. Считают, что за время контакта растворение газа происходит путем нестационарной диффузии в неподвижный слой бесконечной толщины. [c.147]

    Давление оказывает следующее влияние на процесс. Выше 150—200 ат реакции уплотнения молекул и коксообразования, сопровождающиеся блокированием активной поверхности катализаторов углистыми отложениями, термодинамически подавляются и практически почти полностью устраняются при давлениях выше 300 ат они обычно прекращаются. Поэтому окислительной регенерации катализаторов не требуется, а необходима лишь их замена через 2—3 года из-за рекристаллизации. При высоком давлении все реакции, харак терные для гидрокрекинга, протекают стабильно с неизменной интенсивностью, присущей применяемым катализаторам в течение длительного времени. Особенно сильно интенсифицируется при высоких давлениях гидрирование ароматических углеводородов вследствие устранения химико-термодинамических ограничений и облегчения подвода водорода к активной поверхности катализатора. [c.52]

    Таким способом коксовый пирог извлекают в один прием крупными кусками и в течение короткого времени (менее 30 мин) [197] Очистка стенок аппарата и удаление оставшегося небольшого количества кокса проводится в основном вручную. Для механизации этой операции в БашНИИ НП разработано зачистное гидравлическое устройство. Оно состоит из горизонтально расположенной штанги и гидравлического резака с соплами, к которым подводится под высоким давлением вода. Истекающими струями оставшийся кокс удаляется и отработавшей водой выносится из куба. Вода после очистки от коксовой мелочи используется повторно. [c.150]

    Затем пускают воздух со скоростью 500 мл мин. Одновременно увеличивают подвод к печи тепла и температуру поднимают до 550°. Регенерацию ведут при температуре 550° в течение 1,5 часа. Если во время выжига кокса температура будет подниматься вышо 550°, следует, помимо регулировки реостатами, уменьшить подачу воздуха до тех пор, пока температура снова ие снизится до 550°. Тогда подачу воздуха увеличивают до 750 мл мин. По истечении 1,5 часа температура снижается до 450°, причем подачу воздуха не прекращают. После того как установится температура, необходимая для реакции, прекращают подачу воздуха, присоединяют азот и продувают им установку в течение 3 мин. Далее описанным порядком проводят реакцию. [c.808]

    Наибольшее количество кислорода содержится в поверхностном слое воды толщиной около 1 м. С увеличением глубины оно понижается сначала медленно, а затем резко. Подвод кислорода на различную глубину осуществляется диффузией и конвекцией за счет перемешивания слоев воды морскими и воздущными течениями, под действием изменений температуры и плотности воды. [c.192]


    Очевидно, что задача очень сложна, так как при ее решении должны быть учтены влияния много различных параметров, таких, как удельные объемы пара и жидкости, давления и температуры в системе. В работе Лейба [171 дается прямой метод решения этой задачи. Он предлагает уравнения для потерь давления как для зоны с некипящим, так и для зоны с кипящим теплоносителем. Он предполагает, что интенсивность подвода тепла равномерна по длине трубы и что коэффициент трения не испытывает больших изменений с изменением массового расхода. Это последнее допущение подтверждается данными о двухфазном течении, представленными в предыдущем разделе. [c.106]

    Влияние статического напора. В теплообменных матрицах, каналы которых ориентированы вертикально и теплоноситель движется либо вверх, либо вниз, статический напор столба жидкости оказывает влияние на степень устойчивости течения. При полном испарении теплоносителя и постоянном подводе тепла на единицу длины канала высота столба теплоносителя с относительно высокой плотностью и обусловливаемый им статический напор, действующий на входное сечение, прямо пропорциональны массовому расходу. Влияние этого фактора графически показано на рис. 5.22 для типичного случая системы низкого давления, в которой поток в вертикальных каналах направлен вверх. [c.112]

    Неравномерность подвода тепла к параллельным каналам. Предшествующее обсуждение касалось преимущественно течений в одиночных каналах. В случае применения этих соотношений к теплообменной матрице с множеством параллельных каналов необходимо учитывать возможную разницу в подводе тепла между параллельными каналами, соединенными общими коллекторами. О влиянии такой неравномерности подвода тепла можно составить ясное представление, анализируя график на рис. 5.24, который иллюстрирует существующие условия в современном прямоточном парогенераторе, рассчитанном на давление 112 атм. Использована исходная кривая для отношения удельных объемов, равного И, т. е. для (у" — о ) и = 10 (см. рис. 5.21), когда подогрев эквивалентен 10% тепла испарения. График построен таким образом на исходной кривой с рис. 5.21 взяли точку с относительным расходом 1,0 и начали скользить вдоль кривой для 100%-ного содержания жидкости при этом на каждом расстоянии расход изменялся в число раз, равное изменению интенсивности подвода тепла относительно исходной кривой. Анализируя эти кривые, можно прийти к заключению, что при наличии неравномерности подвода тепла к каналам, работающим параллельно с одинаковыми потерями давления, статическая неустойчивость течения не должна возникать. Но некоторые каналы будут давать избыточное количество перегретого пара, в то время как другие будут подавать смесь пара и воды. Несмотря на то, что течение будет устойчивым, будет происходить перегрев стенок некоторых каналов частично ввиду повышенной температуры пара и частично ввиду более низкого местного коэффициента теплоотдачи. Поскольку избыточно перегретый пар генерируется в каналах с большим тепловым потоком, разность температур стенки канала и пара будет более высокой в горячих каналах. Два этих эффекта в совокупности могут привести к перегреву отдельных каналов до 100—150° С. [c.114]

    Подвод тепла определяет изменение давления. Поскольку onst, отношение давлений может быть получено из диаграммы по величине горизонтального расстояния до линии давления. Так на рис. 2-8 отношешю Pa Pf определяется на логарифмической шкале разностью чтрезков АС и BD. При дозвуковом течении подвод теп--43 приводит к понижению давления, а при сверхзвуковом, наоборот, к его возрастай 1ю. [c.47]

    Ступени холодильных центробежных компрессоров состоят из ряда последовательно соединенных элементов, причем в однях происходят процессы сжатия, в других — расширения, а в третьих плотность существенно не меняется. Так, во входном устройстве промежуточной ступени поток движется с увеличением скорости. Это соответствует конфузорному течению, или процессу расширения, при котором плотность падает. В рабочем колесе за счет подвода механической энергии плотность обычно увеличивается [c.60]

    При теоретических исследованиях охлаждения компрессора впрыскиванием воды в цилиндр Л. И. Слобо-дянюк и Ю. Н. Гогин [108] принимают, что вода к сжимаемому воздуху подводится в течение всего процесса сжатия и что подводимая вода испаряется мгновенно. Количество воды а (в кг/кг), подаваемое в цилиндр компрессора, с целью осуществления желаемого политропического процесса сжатия определяется по формуле [c.140]

    Характер поля скоростей подводимого потока ири данном режиме течения зависит только от форм и геометрических параметров аппаратов и подводящих у частков. Если формы и параметры заданы, то с этой точки зрения безраз шчно, какой технологический процесс происходит в аппарате (в некоторых случаях следует только учесть влияние эффекта температурного градиента). Это очень важно, гак как можно решать вопрос о распределении скоростей и способах вч равнивания их по сечению, а также о выборе схем подводящих и отводящих участков в достаточно обобщенном виде. Результаты теоретических исследований и экспериментов со схематизированными моделями можно распространить на аппараты разнообразного технологического назначения, если только их формы и геометрические параметры, а также условия подвода потока к рабочим элементам или изделиям и соответственно условия отвода потока будут близки к исследованным. [c.10]

    Установка перфорированной решетки с / = 0,38 не только не выравнивает поток, но еще больше отклоняет его вверх. Это вполне объяснимо в случае узкого бокового подвода при любом сопротивлении решетки поток сохранит свое направление вверх. В данном случае явление такое же как при течении в обычном раздающем коллекторе с торцовым входом и с перфорированной боковой стенкой при малом отношении площади поперечного ссчения [c.238]

    В более ранних исследованиях [981 применили иной 1Юдход к решению задачи течения жидкости через неподвижный насыпной слой. Используя уравнение движения идеальной жидкости и закон Дарси, связывающий давление в слое и скорость фильтрации через него, они получили зависимость между распределением скоростей в слое, состоянием потока вне его и условиями подвода потока к слою и отвода от него. Несмотря иа сложность полученной связи, анализ ее позволил сделать ряд качественных выводов о влиянии геометрических параметров аппарата на распределение скоростей. Таким образом, сделана также попытка количественно оценить вызванную пристеночным эффектом неравномерность распределения скоростей по сечению слоя для случая, когда ширина пристеночной области с повышенной проницаемостью намного меньше ширины сечения канала. [c.278]

    Полиуретаны образуются и вспениваются в течение 1—2 мин (без подвода тепла). Форма с пеной проходит на транспортере через тоннель с сильной вентиляцией, где происходит наиболее интенсивное газовыделение. При выходе из тоннеля форма попадает на рольганг 5, с которого поступает в сушильную камеру 6 и далее в машину 7 для нарезки блоков. Блоки поступают на штабелер 8, укладываются на эта> ёрки 9 и перевозятся в камеру вызревания 10, где происходит отверждение пенопласта. Выдержка в камере вызревания производится в течение 3 сут при непрерывном обдувании блоков воздухом комнатной температуры. [c.87]

    Основным условием нормального течения процесса ректификации в самой колонне (без учета куба и внешних точек подвода и отвода теппа) является адиабатичность. [c.144]

    В данной работе с помош ью гидродиналгпческой модели [3] исследуются пеоднородпости, связанные с различными способами подвода п отвода потока в аппаратах с неподвижным слоем, структура которого считается однородной. Для определения течения в реакторе при различных способах раздачи потока производится совместный расчет течения как внутри слоя, так и в свободном нростраистве. При этом на входе и выходе аппарата задаются профили скоростей или давление, а на входе и выходе проницаемого слоя полагается, что давление меняется непрерывно и расходы равны. Так как задача рассматривает области с различными свойствами, то решение находится с по-могцью модифицированного метода Шварца, который дает возможность сводить задачу к последовательному решению задач в геометрически более простых областях. Обоснованию сходимости таких алгоритмов для сопряженных без налегания областей посвящены следующие работы [11 —16]. В данном случае нелинейность условий сопряжения приводит к тому, что метод сходится лишь при достаточно малых значениях некоторого гидродинамического параметра Кз. [c.144]

    Для получения полей скорости и давления проведен совместный расчет течения внутри слоя и в свободном пространстве для аппаратов с горизонтальными и вертикальными проницаемыми слоями прп различных способах подвода и отвода потока. Модель предполагает, что зернистый слой однороден, течение внутри слоя подчиняется линейному закону Дарси, в свободном пространстве осуществляется потенциальное течение, среда несжимаема, поток стационарен, течение плоское. Решение в сопряженных областях находится с помощью модифицированного ддя неналегающих областей альтернирующего метода Шварца. Приведены зависимости степени неоднородности потока в слое от параметра Эйлера для различных размеров свободного пространства, прилегающего к слою. Ил. 6. Библиогр. 18. [c.176]

    Пусть Q будет теплотой, подведенной к системе, а W — произведенной работой. Рассмотрим процесс, в течение которого система за счет (положительного или отрицательного) подвода теплоты и соответственно (положительной или отрицательной) совершенной работы is.W проходит через ряд последовательных стадий и вновь возвраща ходное состояние круговой процесс или ци принципу эквивалентности. [c.17]

Рис. 10. Режимы течения жидкости и подвод теплоты при испаро-пни жидкости в трубе Рис. 10. Режимы <a href="/info/15463">течения жидкости</a> и <a href="/info/152125">подвод теплоты</a> при испаро-пни жидкости в трубе
    При постоянном подводе теплоты температура стенки в сухой области значительно выше, чем в области ниже точки высыхания. Прн дальнейшем повышении теплового потока точка высыхания распространяется (перемещается) вниз по потоку (линия 11). В большинстве экспериментов но изучению кризиса теплоотдачи опыт прерывался, как только появлялось первое отклонение температуры на конце канала. Если тепловой ноток достаточно высок, повышение температуры при кризисе теплоотдачи может привести к расплавлению стенок канала, воз.можное местоположение этой кривой показано линией VI/ на рис. 10. Ситуация, показанная в позициях Я—С/, физически невозможна вследствие расплавления стенок трубы, и, чтобы измерить критический тепловой поток при таких тепловых нагрузках и условиях на входе, необходимо использовать более короткие трубы. Отметим, что линия 22 пересекает линии постоянного термодинамического паросо-держания, и режим течения, в котором происходит кризис теплоотдачи, изменяется от кольцевого до области кипения с недогревом. В этой области механизм кризиса кипения [c.187]

    Кольцевые каналы. Число Нуссельта для турбулентного течения жидких металлов (0,007< Ргс0,03) в кольцевых каналах в отличие от Nu для течения в трубах зависит от отношения диаметров труб, образующих канал, так же как от характера подвода теплоты (с внутренней стороны, с внешней стороны или е обеих сторон). [c.337]

    Ниже рассмотрен случай, когда поток обтекает трубу или цилиндр под действием вынужденной, а не свободной конвекции (см. 2.7.2). На фотографиях, которые получены в [1], хорошо видны режимы потока при подъемном течении воды с температурой, близкой к насыщению, вокруг однородно нагреваемой цилиндрической трубы. При умеренных тепловых потоках, обычно около 20% от критической тепловой нагрузки, в спутной струе за цилиндром образуется паровая полость. Сначала эта полость не является сплошной по длине цилиндра, но с ростом теплового потока увеличение длины полости в напранлетш течения приподит к образованию однородной полосы пара. Увеличение скорости от 0,4 до 1,5 м/с или диаметра трубы от 0,254 до 4,8 мм также вызывало образование больщой стабильной паровой полости за цилиндром. При этих условиях жидкость, достигающая нерхней половины цилиндра, движется между паровыми пузырями и поверхностью нагрева, когда пузыри попадают п полость спутной струи. При низких тепловых потоках жидкости больше подводится, чем испаряется, и избыток уносится в полость. Критический тепловой поток достигается, когда подводимой жидкости становится недостаточно для охлаждения верхней половины цилиндра. [c.406]

    Фильтрование происходит под влиянием разности давлений в корпусе фильтра и во внутренней части секций. На процесс фильтрования затрачивается время, в течение которого данная секция погружена в суспензию, а соединенное с ней отверстие в диске цапфы скользит вдоль окна 2 диска распределительной головки. При повороте секции вместе с барабаном против часовой стрелки на ее поверхности образуется слой осадка. Фильтрат через отводную трубку и распределительную головку отводится в сборник фильтрата. Когда секция выходит из слоя суспензии, она еще соединена с окном 2 и вакуум под фильтровальной перегородкой сохраняется, а осадок сушится потоком газа, который просасывается из корпуса фильтра через осадок. При дальнейшем вращении барабана секция соединяется с более коротким окном 4 (рис. XIII-11,0). При этом секция оказывается под вакуумом, который поддерживается в сборнике для промывной жидкости. Разбрызгиваемая из коллектора промывная жидкость проходит через осадок, вытесняя находящийся там фильтрат, затем осадок вновь просушивается проходящим через него потоком газа, при этом секция соединяется с отверстием 3, служащим для подвода газа отдувки под избыточным давлением. Осадок отделяется от поверхности барабана и снимается ножом. После всех этих операций, пройдя мертвую зону, данная секция вновь перемещается в зону фильтрации. [c.389]

    В течение следующего столетия появляется ряд сообщений о явлениях электростатики, наиболее примечательными из которых явились исследования Бенджамина Франклина (1747 г.), основанные на способности заостренных проводников притягивать электрические токи, и Кулона (1785 г.), который изучал потерю заряда из изолированного проводника путем подвода к нему через воздух заряженных частиц. Первый наглядный показ электростатического осаждения приписывается Гольфельду, который в 1824 г. продемонстрировал исчезновение тумана из стеклянного сосуда, в котором был помещен наконечник, заряженный электричеством. Позже, в XIX в, стало известно об аналогичных опытах, продемонстрированных другими исследователями одним из таких примеров является опыт с осаждением табачного дыма в стеклянном цилиндре высотой 450 мм и диаметром 230 мм, показанный Житаром примерно через 26 лет после научного доклада Гольфельда. [c.435]

    При разработке натурных теплообменников иногда целесообразно провести исследование гидродинамики входного участка теплообменника или другого участка сложной конфигурации, чтобы определить общее расиределение потока или падение наиора. Опыты такого рода люжно проводить на простых моделях, поскольку не требуется осуществлять подвод или отвод тепла. Необходимо лишь геометрическое подобие модели и натурного аппарата и обеспечение соответствующего диапазона чисел Рейнольдса. Следовательно, эти опыты можно выполнять с водой или воздухом вместо тех теплоносителей, работа с которыми вызвала бы затруднения. Особенно для подобных целей подходит воздух, небольшие утечки которого не приведут к осложнениям. Кроме того, стоимость модели будет невелика. Если нет резкого отрыва потока, то для определения направления течения, а также распределения скоростей можно использовать трубки Пито. При наличии отрыва необходимо произвести визуализацию течения, используя для этого пучок нитей, которые с помощью изоляционной ленты крепятся к стенкам канала или закрепляются на проволочном зонде, обладающем возможностью перемещаться в поле течения. Можно использовать дым, но это довольно сложно, а результаты обычно бывают неудовлетворительны. Струи дыма за счет турбулентности настолько быстро рассеиваются, что подобный метод применим только при относительно низких числах Рейнольдса и простых геометрических конфигурациях. Любой из этих способов пригоден в том случае, если модели выполнены из прозрачного пластика типа люцита. [c.321]

    При установке силикатных ванн предъявляются следующие основные требования а) все ниже- и вышележащие пласты от водоносного коллектора должны быть изолированы цементным мостом, пакерсм и т. д. б) водоносный коллектор в момент подвода к нему рабочей смеси должен принимать, а не проявлять, закачка рабочей смеси должна осуществляться до прекращения приемистости колле1 тора. После выдержки при избыточном давлении 100— 150 кго/см в течение 2—4 ч проводится испытание скважины на притог и в случае некачественной изоляции коллектора операция повторяется с повышенным содержанием жидкого стекла. [c.255]


Смотреть страницы где упоминается термин Течение в подводе: [c.74]    [c.729]    [c.215]    [c.177]    [c.219]    [c.249]    [c.12]    [c.27]    [c.83]    [c.56]    [c.359]    [c.186]    [c.70]   
Высокооборотные лопаточные насосы (1975) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Тепло подвод при течении сжимаемой жидкости



© 2025 chem21.info Реклама на сайте