Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиды аминокислот, Аминокислотный

    Для установления вторичной и третичной структур химические методы неприменимы. Для этой цели преимущественно применяют рентгеноструктурный анализ, причем из получаемой дифракционной картины рассчитывают распределение электронных плотностей в кристалле белка. Точное установление пространственных структур белков стало возможным благодаря работам Полинга и Кори. На аминокислотах, их амидах и простых пептидах в основном с помощью рентгенографических исследований были определены длины связей и валентные углы. Оказалось, что пептидная связь в значительной степени обладает характером двойной связи. Она является планарной, поэтому в пептидной цепи на один аминокислотный остаток приходятся лишь два места поворота. Одним является поворот вокруг С —К-связи (угол >р), другим — вращение вокруг оси С —С-связи (угол ф). Значения риф для всех остатков аминокислот определяют пространственное расположение цепи. [c.375]


    Что касается аминокислотного состава, то во всех этих случаях он такой же, как у запасных белков. В наибольшей степени представлены аргинин, аспарагиновая и глутаминовая кислоты и их амиды концентрация серосодержащих аминокислот незначительна (табл. 6А.2). [c.156]

    Если окажется, что эти данные имеют общее значение, то это будет означать, что амид, содержащий аминокислотную группу, связанную с аммиачной группой (например, глутамин), может обменять свою аммиачную группу на аминокислоту и даже на пептид. Энергия для этого процесса будет доставляться синтезом глутамина, которому, как показал Спек, может предшествовать образование фосфатсодержащего промежуточного продукта. Тогда специфичность фермента, который катализирует [c.77]

    АНАЛИЗ ПОЛИПЕПТИДОВ. Полипептиды, как и прочие амиды, можно гидролизовать водными растворами кислот или щелочей. После полного гидролиза полипептида можно при помощи аминокислотного анализатора установить его качественный и количественный аминокислотный состав, но не точную последовательность аминокислот. Если перед гидролизом обработать полипептид реактивом Сэнгера, то можно будет затем идентифицировать его N-концевую аминокислоту, так как она даст устойчивое окрашенное производное анилина, которое не разрушается при гидролизе. [c.402]

    Аминокислотный состав белковых фракций семян злаков к настоящему времени довольно хорошо изучен. В таблице 10, составленной по данным Е. Иемма (1958), приведены резз льтаты определений содержания аминокислот в некоторых белках, выделенных из семян. Эти данные показывают, что содержание почти всех аминокислот в отдельных белковых фракциях сильно различается. По своему аминокислотному составу особенно отличаются от других белковых фракций проламины. Эта группа белков характеризуется очень высоким содержанием глутаминовой кислоты и амидного азота. В глиадине пшеницы и гордеине ячменя, например, почти половина от общего содержания азота в белках приходится на долю глутаминовой кислоты и амидов. Амидные группы в белках связаны с глутаминовой кислотой, и, таким образом, в проламинах до половины общего количества азота содержится в виде этих комплексов. Проламины характеризуются также высоким содержанием пролина (до 15% в гордеине ячменя) и очень малым количеством серусодержащих аминокислот и основных аминокислот, особенно лизина. [c.355]

    Эта реакция широко применяется в анализе аминокислотного состава белков. Для этой цели белки подвергают расщеплению до аминокислот путем кипячения в течение 20 ч с 6 н. НС1. При такой обработке повреждаются триптофан и амиды [c.250]


    Это различие между глобулинами и альбуминами по их физиологической роли в семенах обусловлено существенными различиями в аминокислотном составе этих двух фракций. В частности (табл. 6А.1), альбумины обычно имеют повышенное количество серосодержащих аминокислот и лизина. Аминокислотный состав глобулинов характерен для запасных белков, богатых аспарагиновой и глутаминовой кислотами и их амидами, с одной стороны, и аргинином — с другой. [c.151]

    Примером наиболее полного расщепления белковой цепи при действии лейцинаминопептидазы является гидролиз меркурипапаина. При низких концентрациях фермента первые девятнадцать аминокислотных остатков отщепляются за 24 час в примерно стехиометрических количествах. Реакция, по-видимому, прекращается тогда, когда остаток аргинина становится Й-концевым. При более высоких соотношениях фермент/субстрат расщепление происходит в большей степени, пока 2/з белка не расщепится До свободных аминокислот. Белковый остаток после активации полностью сохраняет активность (в расчете на 1 моль) по отношению к бензоил арг инил амиду. Это свидетельствует о том, что активный центр молекулы находится на С-концевом участке цепи. [c.237]

    Дополнительные трехбуквенные символы Азх, 01х — либо кислота, либо амид. Аминокислотный остаток —НМ—СНН—СО есть часть аминокислоты (рис. 1.2,а), входящая и пептидное звено К — боковая цепь (рис. 1.1). Дополнительные однобуквенные символы В = Азх, 2 = 01х, X = неизвестный или минорный аминокислотный остаток.  [c.10]

    Его аминокислотный, состав включает два остатка метионина (что ограничивает использование гидрогенолиза в процессе синтеза), два остатка чувствительного к кислотной обработке триптофана и щесть остатков кислых аминокислот. Карбоксильная концевая группа закрыта остатком первичного амида, а концевая аминогруппа — пироглутамильным остатком (циклической глутаминовой кислотой). Первоначальный план синтеза включал как ступенчатое наращивание, так и конденсацию фрагментов, и вся цепь была разделена по пептидным связям 5,6 и 13,14. Глициновый остаток в положении 13 служил обычной точкой сшивки, поскольку он представляет собой нерацемизующийся остаток на С-конце одного пептидного фрагмента. Сшивка в точке 5 была выбрана потому, что наличие в этом месте остатка метионина не дает возможности проводить гидрогенолиз в процессе построения нужной последовательности остатков в центре молекулы. [c.412]

    Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% а-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это у-амино масляная кислота, К-ацетиласпарагиновая кислота и цистатионин (см. главу 1). [c.634]

    Для формирования комбинаторной библиотеки амидов 2-замещенных и 2,3-ди-замещенных 4-тназолндон-5-уксусных кислот использовано взаимодействие малеинимидов с тиомочевинами или тиосемикарбазонами в уксусной кислоте. Для синтеза труднодоступных производных с аминокислотным фрагментом в молекуле малеинимид, полученный ш situ длительным нагреванием малеинангидрида и соответствующей аминокислоты в уксусной кислоте, не выделялся, а вводился непосредственно в реакцию (схема 7). [c.333]

    Получение П. термич. поликонденсацией а-аминокислот возможно только в случае глицина. Остальные а-аминокислоты при нагревании разрушаются или превращаются в циклич. димеры — замещенные пипера-зиндиоды-2,5. Последние, в отличие от прочих циклич. амидов (лактамов), не способны к гидролитич. или ионной полимеризации. Исключение составляет незамещенный пиперазиндион-2,5, к-рый при нагревании в р-ре до 140°С и выше превращается в полиглицин. Три-функциональные аминокислоты (глутаминовая и аспарагиновая к-ты и лизин) при 160—200°С способны образовывать как гомополимеры, так и сополимеры с бифункциональными аминокислотами. Продукты реакции хотя и похожи по своим свойствам на пептоны, но содержат большое число неприродных са-амидных связей и рацемизованных аминокислотных звеньев. [c.17]

    Заканчивая рассмотрение аминокислотного обмена, следует сказать, что обычно в растениях в свободном состоянии содержится 20—30 различных аминокислот, которые подвергаются непрерывным превращениям используются для синтеза белков, нуклеиновых кислот, алкалоидов и других азотистых веществ, превращаются в безазотистые соединения — органические кислоты, углеводы, жиры. Содержание аминокислот в растениях может резко меняться в зависимости от возраста растений, от ряда внешних условий (температуры, длины дня, увлажнения и т. д.), а также от питания. При этом изменяется ке только концентрация, но и качественный состав аминокислот. Различные внешние воздействия, нарушая течение азотного обмена, часто направляют его по другим путям, что приводит к уменьшению или даже к исчезновению ряда аминокислот, характерных для данного растения, или, наоборот, к повышенпю общего содержания аминокислот, или появлению ряда нехарактерных продуктов азотного обмена. При обычных условиях выращивания количество свободных аминокислот с возрастом растений понижается. В вегетативных органах растений свободных аминокислот обычно больше, чем в репродуктивных, в то время как для белков наблюдается обратная зависимость. При различных условиях минерального питания содержание индивидуальных аминокислот в растениях и соотношение между ими могут быть резко различными. Увеличение общего количества свободных аминокислот в растениях и усиленное накопление отдельных аминокислот наблюдается при пониженном питании растений калием, фосфором, серой, кальцием и магнием, а также при недостатке ряда микроэлементов цинка, меди, марганца, железа. Увеличение содержания аминокислот наблюдалось также при лучших условиях азотного питания. При недостатке молибдена количество свободных аминокислот и амидов в растениях уменьшалось вследствие ослабления восстановления нитратов. В настоящее время проводятся широкие исследования [c.264]


    И аспарагиновой. Однако примерно половина этих аминокислот присутствует в белке в виде амидов. Из 16 ООО аминокислотных остатков, содержащихся в одной рибосоме, приблизительно 3000 имеют основной и 1400 кислый характер. Таким образом, чистый положительный заряд рибосомного белка гороха составляет примерно 1600 на каждую рибосому. Рибосома содержит в своей рибонуклеиновой кислоте примерно 6000 нуклеотидов это означает, что один из каждых четырех нуклеотидов может быть нейтрализован за счет общего положительного заряда рибосомного белка. Для нейтральности рибосом очень важен также ион магния, который также прочно связан с рибосомами. Так, например, рибосомы гороха содержат связанный магний в соотношении 1 экв магния на 3—4 нуклеозидфосфата [8, 37]. Ионы кальция также связываются рибосомами, хотя и в значительно меньшем количестве, чем ионы магния. [c.22]

    В разных видах растений в свободном состоянии можно найти до 100 различных аминокислот. Содержание свободных аминокислот в растениях не остается постоянным, а подвергается заметным изменениям в зависимости от внешних факторов, общего состояния растения и от направленности в нем процессов обмена веществ. В ряде экспериментов показано, что аминокислотный состав листьев и других органов, а также абсолютное и относительное содержание отдельных аминокислот могут существенно изменяться в зависимости от возраста растений, температурного и светового режйма, а также от условий питания. Повышение общего содержания свободных аминокислот в растениях и накопление ненормально высокого количества отдельных аминокислот наблюдалось при недостаточном питании растений калием, серой, кальцием, магнием, некоторыми микроэлементами (цинком, медью, марганцем, железом). В отличие от влияния других элементов недостаток молибдена приводит к снижению количества аминокислот и амидов в вегетативных органах растений. [c.37]

    В результате структурных исследований удалось показать что а-МСГ представляет собой амид К-ацетилтридекапептида последовательность аминокислотных остатков которого совпа дает с последовательностью первых 13 аминокислот адренокор тикотропина (табл. 6). При этом не найдено каких-либо видо вых различий так, идентичные образцы а-МСГ были выделены из гипофиза свиньи [944, 950, 1357], быка [790, 1396], лошади [609], овцы [790] и обезьяны [1360]. В соответствии с этим обозначения ас-МСГ, аб-МСГ, ад-МСГ, ао-МСГ, об-МСГ и ч-МСГ отвечают меланотропинам гипофиза свиньи, быка, лошади, овцы, обезьяны и человека. Во всех случаях последовательность аминокислот а-МСГ определяли с помощью частичного кислотного гидролиза, а также расщепления карбоксипептидазой, химотрипсином и трипсином. На рис. 47 показаны пептиды, образующиеся при ферментативном расщеплении а-меланотропина гипофиза обезьяны. Строение Рс-МСГ, являющегося, как пока- [c.228]

    Так, Mulder (49, 50) и другие выращивали люцерну, клевер, цветную капусту, шпинат и томаты на фоне молибдена и без внесения этого элемента. При появлении признаков молибденовой недостаточности в клубеньках бобовых и в листьях овощных растений определяли содержание. различных аминокислот. Было установлено, что без молибдена в клубеньках бобовых резко снижалось содержание а-ала ина, аспарагина и глютаминовой кислоты. У шпината, томате и цветной капусты при выращивании растений на нитратном фоне без молибдена уменьшилось содержание глютаминовой кислоты и глютамина. В работе Мининой (14) отмечается, что под влиянием молибдена в растении накапливаются такие аминокислоты, как глютаминовая кислота, серин, аргинин и амид глютамин. Hewitt (46) наблюдал, что уменьшение содержания молибдена в питательной среде приводит 1К снижению содержания свободных аминокислот у цветной капусты. Значительные изменения в аминокислотном составе растений наблюдали под влиянием молибдена Школьник, Боженко и другие исследователи (28, 29). [c.105]

    Фонд свободных аминокислот в клетках живых организмов имеет эволюционную, органную и тканевую специфичность. Например, аминокислотный состав мозга существенно отличается от состава других органов и тканей присутствием избыточного количества дикарбоновых кислот и их амидов они составляют две трети от общего количества аминокислот в мозге всех видов животных. Глутамин, аспарагин и их остатки в составе пептидов в организме неферментативно гидролизуются до соответствующих дикарбоновых кислот. В связи с этим важно отметить, что белки молодых клеток характеризуются более высокой степенью амидированности, чем белки стареющих клеток (Пушкина, 1977). [c.25]

    Поскольку надежность определения аминокислотной последовательности снижается при приближении к С-концу пептида, рекомендуется выделить С-концевой (ые) фрагмент(ы) исходного соединения, проверив еще раз его аминокислотный состав, подвижрюсть в электрофорезе при pH 6,5 и полученные характеристики сравнить с ожидаемыми на основании имеющихся структурных данных. Погрешности в установлении С-концевой аминокислотной последовательности могут привести к неправильному соединению фрагментов и, таким образом, к значительным ошибкам при реконструкции полипептидной цепи. Разумно совместить в одном эксперименте контроль структуры С-концевой области пептида с идентификацией амидов дикарбоновых аминокислот. [c.358]

    Влияние достаточно глубокого и (или) продолжительного дефицита влаги на аминокислотный состав растений заключается в уменьшении количества связанных (входящих в состав белков) и накоплении свободных аминокислот и амидов. Свободные аминокислоты в листьях, стеблях, корнях и колосьях зерновых культур распределяются при разной водообеспеченности неодинаково. На распределение аминокислот по органам растений влияют даже сортовые особенности. Так, например, при достаточной водообеспеченности суммарное содержание свободных аминокислот было более высоким в листьях, стеблях и колосьях озимой пшеницы сорта Безостая 1, чем в тех же органах двух других сортов — Мироновская 808 и Одесская 16 (табл. 31). Ухудшение водообеспеченности растений (водный [c.186]

    Из содержащихся в свекле азотистых веществ в жоме остается общего азота 50%, белкового — 80, растворимого—30%. Амидный и аммиачный азот полностью переходят в диффузионный сок. К растворимому азоту относится азот аминокислотный, бетаина, пуриновых оснований и нитратный. Находящийся в жоме протеин представлен альбуминами и глобулинами. Кроме простых белков, в жоме содержится незначительное количество протеидов, главным образом в виде нуклеопро-теидов. В нуклеиновых кислотах этих соединений имеются азотистые структурные элементы, пурин, пиримидин, рибоза (пентоза) и фосфорная кислота. В сыром жоме общее содержание аминокислот колеблется в пределах 0,3—0,5%. В состав аминокислот входят аланин, валин, лейцин, изолейцин, аспарагиновая, глютаминовая кислоты, лизин, аргинин, фенилаланин, тирозин, пролин и триптофан. Амидный азот обнаруживается преимущественно в глютамине и аспарагине. Амиды в свекле и жоме содержатся в сравнительно небольшом количестве. Кроме аминокислот и амидов, жом содержит бетаин— растительное основание , включающее ряд азотистых соединений. [c.19]

    Сведения о рецепторных белках и механизме их взаимодействия с сигналами внешней среды весьма скудны. Представителем фоторецепторных белков является опсии, существующий в виде соединения с ретиналем (родопсин) и изменяющий свою конформацию, что связано с преобразованием светового сигнала в нервные импульсы в процессе зрительного акта (см. гл. IV, рис. 60). Из вкусовых рецепторных белков изучен сладкочувствитель-пый белок (М = 150 ООО). Его аминокислотный состав характеризуется высоким содержанием дикарбоновых аминокислот и их амидов, лизина, лейцина, вали-на и пролина. Он способен связывать моносахариды и дисахариды. Обонятель- [c.92]

    Матричный механизм биосинтеза белков. Общая схема матричного биосинтеза белковых тел представлена на рис. 93. Она складывается из трех подготовительных процессов—переноса вещества, энергии и информации в рибосому, и главного центрального процесса—сборки полипептидных цепей в рибосоме. Один из элементов указанной схемы (правая верхняя часть рисунка)—транскрипция (переписывание) информации о порядке расположения аминокислотных остатков в молекуле синтезируемого белка—рассмотрен ранее. Известно, что информация об этом закодирована в генетическом аппарате клетки последовательностью дезоксирибонуклеотидных остатков в молекуле ДНК. Будучи преобразована (транскрибирована) в последовательность рибонуклеотидных остатков в информативной части молекулы мРНК, синтезированной на ДНК в качестве матрицы, эта информация о первичной структуре белка поступает в рибосому. Здесь она переводится (транслируется) с полинуклеотидной последовательности в аминокислотную последовательность новообразуемого в рибосомальном аппарате белка. Два других процесса—перенос вещества (18 протеиногенных аминокислот и двух амидов) и. перенос энергии, необходимой для синтеза пептидных связей (левая верхняя часть рисунка), равно как и наиболее сложный процесс—сборка полипептидной цепи в активной, транслирующей рибосоме (центральная часть рисунка), нуждаются в детальной характеристике. Она дана ниже. [c.280]

    Установлено, что производные дегидроаланина и дегидропептидов, содержащие остаток дегидроаланина, взаимодействуют с ацетатом ртути с образованием амида насыщенной аминокислоты (от аминокислотного остатка в N-конце) и производных пировиноградной кислоты (от остатков в С-конце) [c.112]


Смотреть страницы где упоминается термин Амиды аминокислот, Аминокислотный: [c.377]    [c.216]    [c.249]    [c.295]    [c.445]    [c.135]    [c.173]    [c.53]    [c.249]    [c.41]    [c.17]    [c.371]    [c.66]    [c.66]    [c.163]    [c.185]    [c.217]    [c.225]    [c.256]    [c.303]    [c.135]    [c.173]    [c.358]   
Практическая химия белка (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды Аминокислоты



© 2024 chem21.info Реклама на сайте