Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители теория

    Гетерогенные катализаторы включают как необходимый компонент какую-либо поверхность— или собственную кристаллическую фазу, или носитель. Теория активных ансамблей позволила разобраться, в какой степени и какие именно процессы являются чувствительными к действию носителя. [c.115]

    Общепринятая теория бифункциональной изомеризации предполагает, что под действием металлического компонента происходит дегидрирование парафинов с образованием олефинов, а олефины изомеризуются на кислотных центрах[67]. Каталитическая система металл - носитель типа алюмоплатинового катализатора благодаря своей бифункциональной природе позволяет, в зависимости от типа реакции, применять различные способы промотирования, направленные на усиление тех или иных функций этой системы. [c.42]


    Блестяще подтвердилось научное предвидение С. В. Лебедева, содержащееся в его выступлении на сессии Академии Наук СССР в 1932 г. Синтез каучуков— источник бесконечного многообразия. Теория не кладет границ этому многообразию. А так как каждый новый каучук является носителем своей оригинальной шкалы свойств, то резиновая промышленность, пользуясь наряду с натуральным, также и синтетическими каучуками получит недостающую ей сейчас широкую свободу в выборе нужных V, свойств . [c.8]

    Этот прием—разбивка колонки на тарелки—представляет по существу замену реальных процессов, непрерывно протекающих в хроматографической колонке, эквивалентным по результатам периодическим процессом, также приводящим к размыванию полосы компонента, введенного на первую ступень такой эквивалентной колонки он полезен тем, что позволяет легко получите уравнение, описывающее форму размываемой полосы. Уравнение такого же вида получается и из диффузионно-массообменной теории, что, как будет показано ниже, позволяет связать обе теории и выразить высоту эквивалентной теоретической тарелки в функции скорости потока газа-носителя. [c.576]

    Таким образом, теория активных ансамблей дает возможность, исходя из опытной зависимости активности от концентрации катализатора на поверхности носителя, определять чис- [c.358]

    Энтропия информации адсорбционных катализаторов. Согласно теории активных ансамблей, наличие неоднородностей поверхности всякого носителя, характеризуемых потенциальными ямами, ограничивает подвижность нанесенных металлов так называемыми областями миграции. Внутри этих областей атомы располагаются с вероятностью, определяемой законом Пуассона  [c.104]

    Простейший пример механизма сопряжения — совместная работа двух катализаторов (например, с помощью прямого взаимодействия промежуточных продуктов частных реакций различного типа, адсорбированных на соприкасающихся кристаллах (зернах) контактов разных функций, через перемещение адсорбированных промежуточных продуктов с контакта на контакт посредством поверхностной диффузии, а также через газовую фазу с десорбцией с одного контакта и адсорбцией на другом). Преимущественное использование смешанных катализаторов перед простыми и необходимость применения носителей и модификаторов вызваны необходимостью обеспечить скрытое сопряжение, требуемое для получения определенного продукта. Для эффективного сопряжения, как правило, требуются сложные каталитические системы. До сих пор их находят в основном эмпирически. Сознательный подбор и конструирование таких систем — одна из насущных задач теории катализа. Его частный и особенно важный вид — морфологический катализ — состоит в обеспечении определенного строения продуктов реакции. [c.306]


    До сравнительно недавнего времени носитель рассматривали как инертную составляющую катализатора. Обычно как доказательство инертности носителей приводится отсутствие у них каталитической активности. Однако, как указывалось несколько выше, и у других типов сложных катализаторов один из компонентов может не обладать каталитической активностью. Шваб [87] показал, что при варьировании носителей для одного и того же активного компонента изменяется не только удельная каталитическая активность последнего, но и электрические свойства получаемого катализатора (электропроводность). Следовательно, влияние носителя может иметь электронную природу, что должно также вытекать из теории явлений в пограничных слоях металлов и полупроводников. [c.46]

    В 1814 г. Дэви обнаружил, что соединение иода с кислородом (теперь это соединение называется йодноватый ангидрид) проявляет кислотные свойства только при присоединении к нему воды. При замещении в образовавшемся соединении водорода па металл получались соли. Так впервые была установлена разница между ангидридом и кислотой. На основании результатов этого исследования Дэви предположил, что носителем кислотных свойств является не кисло-лород, а водород. Этот взгляд был развит и обоснован на большом экспериментальном материале Дюлонгом и, особен-бенно, Либихом. Кислородную теорию заменила водородная теория кислот. [c.231]

    Электронная теория Ф.Ф.Волькенштейна постулирует, что скорость реакций регулируется всей массой имеющихся в катализаторе нелокализованных носителей заряда - электронов или дырок. В настоящее время некоторые авторы больше внимания уделяют свойствам отдельных атомов в твердом теле и влиянию на их электронные свойства ближайшего окружения. [c.86]

    Теория промежуточных соединений не объясняет зависимость активности катализаторов от способа их приготовления, типа носителя и других факторов, определяющих структуру катализаторов. [c.63]

    Носители (трегеры) — пористые термостойкие каталитически неактивные или малоактивные материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При этом достигается тонкое диспергирование катализатора, экономия дорогих металлов, создаются большие удельные поверхности при размерах пор, близких к оптимальным, увеличивается термостойкость. Носитель может взаимодействовать с собственно-каталитическим веществом, повышая его активность. Химическое участие носителя в катализе пытаются объяснить, используя теорию поля лигандов [26—29]. [c.62]

    Теория применима, если на поверхности носителя находится очень небольшое число атомов металла, обычно меньше 0,01 того количества, которое требуется для заполнения всей поверхности мономолекулярным слоем этого материала (так называемые адсорбционные катализаторы). [c.449]

    Число атомов в активном ансамбле можно определить из зависимости активности А адсорбционного катализатора от среднего числа атомов металла V в одной области миграции, так как она должна иметь максимальное значение при числе атомов металла в активном ансамбле. Это объясняется тем, что согласно теории вероятности при случайном распределении атомов на поверхности носителя наибольшее число областей миграции будет содержать среднее число атомов металла V. [c.450]

    Таким образом, местом каталитической активности является не кристаллическая, а аморфная фаза, первая же является лишь носителем. Кристаллическая фаза представляет ячеистую, или мозаичную, структуру—агрегат из замкнутых ячеек ( области миграции ), окруженных энергетическими и геометрическими барьерами, непреодолимыми для поверхностных атомов, и остающихся изолированными. Если на такую мозаичную поверхность наносить атомы, то они распределятся по законам теории вероятности, как дробинки, высыпанные на шахматную доску. Попадая в области миграции, имеющие вид энергетических ям или воронок, атомы собираются на дне последних, т. е. в месте с наибольшим адсорбционным потенциалом, образуя ансамбли (рис. 31). [c.145]

    Однако мультиплетная теория считает активные центры образованиями кристаллической природы и придерживается принципов структурного и энергетического соответствия между строением молекул реагентов и решеткой катализатора. Теория ансамблей Кобозева полностью отрицает активность кристаллической фазы п кристаллическое строение активных центров, а также критикует жесткое доминирование принципа структурного соответствия в гетерогенном катализе , так как строение ансамблей определяется не структурными, а скорее энергетическими факторами. Н. И. Кобозев считает также, что активные центры (ансамбли) не являются элементами кристаллической решетки катализатора, их можно отделить от кристаллической фазы и создать искусственно на подходящем носителе, что будто бы в десятках случаев уже осуп ествлено. [c.148]


    Калибровка детекторов. Интенсивность сигнала детектора зависит как от свойств детектируемого соединения, так и от детектирующего устройства. Поэтому в принципе она может быть рассчитана, а следовательно, и положена в основу количественных изме- рений. Однако современное состояние теории детектирования позволяет делать такие расчеты лишь для небольшого числа типов детекторов. Так, например, для детектора по плотности концентрация анализируемого вещества может быть рассчитана по величине сигнала (например, по площади пика), если известна молекулярная масса применяемого газа-носителя. Для детектора по сечению ионизации количество вещества вычисляется по площади пика и сечению ионизации молекул анализируемых соединений и газа-носителя. [c.45]

    Теория газовой хроматографии сформулирована в соответствии с теорией разбавленных растворов. Это связано с тем, что разработка теории велась в рамках проявительного метода, в котором анализируемые вещества значительно разбавляются газом-носителем. Однако в газовой хроматографии возможны случаи, например, в любом из вариантов фронтального метода, когда разбавле- [c.144]

    Из сказанного выше вытекает, что кристаллическое состояние является важным и интересным для изучения, но все-таки одним из частных состояний твердого вещества. Не менее важно и интересно не периодическое, но регулярное состояние вещества. В подобном состоянии находятся высокомолекулярные, в частности, белковые вещества. При таком взгляде на твердое вещество кристаллическая решетка перестает быть основой для его изучения. И все наше внимание сосредоточивается на остове твердого вещества, тем более, что, как отмечалось выше, в отличие от абстрактной кристаллической решетки остов — реальный объект — непрерывная цепь, сеть или каркас, построенные из атомов, соединенных атомными связями. Остов может быть выделен в свободном состоянии, если в него входит достаточное количество вещества, равное, как, например, показывает опыт выделения кремнекислородных и углеродных остовов, по крайней мере 40% массы исходного твердого соединения. Остов — это носитель дальнего порядка, задаваемого межатомным взаимодействием. Отсюда следует, что изучение химического строения, конструирование и сборка атомных моделей вещества — старые надежные методы химического исследования — являются главными методами изучения твердого вещества. Вместе с тем настало время для конструирования и химической сборки твердых веществ и притом не только сравнительно простых, но и самых сложных веществ, в том числе различных материалов. При этом, конечно, следует руководствоваться не только химическими соображениями. Необходимо принимать также в расчет выводы теории устойчивости и прочности материала. Эта теория целиком основывается на учете межатомного и межмолекулярного взаимодействия и химического строения. Например, жесткость материала характеризуется модулем Юнга Е. При этом исходят из того, что, нагружая твердое вещество, мы действуем непосредственно на его межатомные связи. Отсюда ясно, что различие величины Е для разных веществ обусловлено различием жесткости самих химических связей. Модуль Юнга равен для алюминия всего 0,8-10 кГ/мм , для сапфира—4-10 а для алмаза 12-Ю кГ/мм . Именно исключительная прочность и жесткость связей С — С в алмазе делает его самым твердым и жестким из твердых веществ. [c.243]

    Если исключить парообразные атомные катализаторы, то все остальные атомно-гетерогенные катализаторы включают как необходимый компонент какую-либо поверхность— либо собственную кристаллическую фазу, либо носитель. Теория активных ансамблей позволила разобраться, в какой степени и какие именно процессы являются чувствительными к действию носителя. При этом оказалось, что такое рассмотрение перебрасывает мост между гетерогенным и ферментным катализом. Т1менно в таком обобщающем смысле этот вопрос изложен Линдсеем [96] в 4, 2 обзора по чистой и прикладной химии за 1964 г. Приводим этот параграф. Он непосредственно связан с теорией рекуперации энергии при ката-лизе. Автор пишет Модели активного центра, ассоциированного с организованным многоатомным носителем, изучались главным образом с целью определения, насколько далеко действует носитель, как среда для переноса энергии или функционирует, как резервуар энергии, и каким путем комбинация центра и носителя способствует быстрому переносу электронов . [c.41]

    Органические вещества помещаются между тонкими прозрачными непроводящими листами, которые сами расположены между пластинами конденсатора, одна из которых полупрозрачна. Модулированный свет проходит через этот полупрозрачный электрод и освобождает в твердом веществе заряды. Разность скоростей диффузии носителей зарядов вызывало появление сигнала, который усиливался. Если к пластинам конденсатора прикладывается затем постоянная разность потенциалов, то в зависимости от того, совпадают или отличаются знаки освещаемого электрода и более подвижного носителя, сигнал становится больше или меньше. Таким образом, можно было определить знак носителя. Теория этого вопроса рассмотрена в работах Лошкарева [74, 751. [c.708]

    По теории электролитической диссоциации носителями кислотных свойств являются ионы водорода, а носителями основных — ионы гидроксила. Раствор будет нейтральным, т. е. не кислым и не н елочным, если Си+=соы = У При 25° С /(щ=10 , поэтому в нейтральном растворе сн+=Ю моль/л и Соп-= = 10 " моль/л. Если вместо концентрации использовать водородный показатель рП, введенный Зореисеном (1909) (рН = —lg к+), то нейтральному раствору будет отвечать pH 7. При pH<7 раствор кислый, при рН>7 — ыгелочноп. [c.39]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    В теории тарелок хроматографическая колонка по аналогии с дестилля-ционной колонкой разбивается на ряд последовательных ступеней тарелок , через которые газ проходит периодическими толчками . Тарелка содержит газовую и неподвижную фазы. За время каждого такого толчка на тарелках успевает установиться равновесие между газом и неподвижной фазой для всех компонентов. Очевидно, что введение пробы, например, одного компонента в газ, поступающий на первую тарелку, приведет к распределению зтого компонента между газом и неподвижной фазой. При следующем толчке газа на вторую тарелку вместе с газом-носителем поступает меньшее количество компонента, так как часть его останется в неподвижной фазе и частично десорбируется в чистый газ-носитель, поступивший на первую тарелку. По мере повторения [c.576]

    В теории тарелок реальный непрерывный хроматографический процесс был заменен эквивалентным по результатам идеальным равновесным периодическим процессом, при котором размывание полосы компонента в газе-носителе вызывалось последовательной серией равновесных распределений этого ком-аонента между подвижной газовой и неподвижной твердой или жидкой фазалш на отдельных ступенях колонки. В начале предыдущего параграфа (см. стр. 575) было отмечено, что физические причины размывания хроматографической полосы различны они связаны как с процессами диффузии в движущемся газе [c.580]

    Эта задача была решена Н. И. Кобозевым в 1939 г. в созданной им теории активных ансамблей, основное исходное положение которой заключается в следующем носителем каталитической активности является находящаяся на поверхности атомная (докристаллическая) фаза катализатора относитель-. но которой поверхность носителя (или кристаллическая фаза самого катализатора) выполняет функцию инертной подкладки., Для каждого же данного процесса активным центром является ансамбль из определенного числа п атомов катализатора. [c.355]

    Имеются экспериментальные данные, свидетельствующие о миграции атомов водорода от металла к окислу-носителю это катализ восстановления окислов водородом в присутствии малых количеств металлов, активирующих водород, и катализ очистки водородом закок-сованной AI2O3, служащей носителем для Pt. Можно, наконец, усомниться и в правомерности самого механизма, основанного на теории бифункционального катализа, и постулировать прямую изомеризацию радикалов, адсорбированных на металле (разд. И1.2). [c.61]

    Элвин Б. Стайлз. Носители и нанесенные катализаторы. Теория и практика. - М. Химия, 1991. -240 с. [c.158]

    В реальных условиях хроматографического разделения массо-обмен, т. е. процессы адсорбцгш на поверхности жидкости, диффузия в толщу пленки, взаимодействие с поверхностью твердого носителя и соответствующие обратные нореходы в газовую фазу идут с различной скоростью. Влияние всех перечисленных процессов учитывается введением оби1его эффективного коэффициента диффузии, Он представляет собой сумму эффективных коэффициентов диффузии отдельных стадий н зависит от скорости потока газа. Форма линии хроматографической полосы в теории диффузии описывается кривой Гаусса. [c.290]

    Авторы считают, что катализаторы способны относительно длительное время сохранять полученную ими энергию возбуждения (теплового, светового и т. д.), причем вероятность такого возбуждения растет с усложнением системы, с увеличением молекулярного веса. Катализатор воспринимает такл<е часть энергии реакции, что позволяет в результате возбуждения снизить энергию активации процесса. Катализатор является как бы энергетической ловушкой , в которой энергия химического процесса некоторое время задерживается от рассеяния, чем облегчается переход через энергетический барьер. Таким путем делается попытка объяснения сверхактивности ферментов, состоящих из комбинации активной группы с носителем, Эффект агравации—проявление особых свойств вещества в термодинамически неравновесном состоянии (ср. теорию пересыщения, стр. 144)—является, по Н. И. Кобозеву и О, М. Пол-торак, катализом энергетически возбужденными структурами. Теория агравации требует для своего признания дальнейших эспери-ментальных подтверждений. [c.149]

    И остается неудовлетворенной потребность ученых видеть систему химических элементов в более естественном (первородном) виде. Однако основная масса ученых-система-тизаторов отклонилась от этого магистрального пути и направила свои усилия на теоретизирование по поводу явления периодичности. Появилось немало работ, посвященных теории Периодической системы, проблемам ее количественной интерпретации, вопросам моделирования явления периодичности , — отмечают авторы [11]. При внимательном прочтении данной цитаты можно увидеть завуалированную подмену объекта познания. Вместо природного объекта — естественного множества химических элементов, таковым стало мифическое явление периодичности , оторвавшееся от своего носителя — множества химических элементов, представляющего собой естественную систему. Потеря материального объекта познания в теоретическом естествознании стала явлением отнюдь не редким. В подтверждение сказанного приведу еще один пример. В. И. Семишин пишет [12] Примерно i d 50 лет было предложено более 100 вариантов таблиц Пери- одической системы. Это явилось следствием неудовлетворенности классической формой таблицы, которая не в состоянии была раскрыть полностью все глубокое содержание Периоди- [c.76]

    В пособии рассматривается теория хроматографического процесса, даны теоретические основы выбора сорбентов, освещены теоретические аспекты различных вариантов газовой хроматографии капиллярной, вакантной, препаративной, хроматографии без газа-носителя и с программированием температуры. Специальная глава посвящена применению газовой хроматографии для изучения физико-химических свойств веществ. [c.2]


Смотреть страницы где упоминается термин Носители теория: [c.211]    [c.364]    [c.525]    [c.32]    [c.589]    [c.361]    [c.399]    [c.106]    [c.659]    [c.659]    [c.156]    [c.399]    [c.289]    [c.290]    [c.149]    [c.150]    [c.98]    [c.26]    [c.307]   
Лабораторная техника органической химии (1966) -- [ c.272 , c.274 , c.290 ]




ПОИСК





Смотрите так же термины и статьи:

ТЕОРИЯ И СОРБЕНТЫ Березкин, В. П. Пахомов, U. Е. Купермав, С. Б. Капияевич, И. А. Лобадюк. Электронно-микроскопическое исследование носителей

ТЕОРИЯ, НЕПОДВИЖНЫЕ ФАЗЫ И НОСИТЕЛИ ДЛЯ ГАЗОВОЙ ХРОМАТОГРАФИИ Рекомендации по представлению величин удерживания

Теория хроматографии без газа-носителя



© 2025 chem21.info Реклама на сайте