Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерогенные атомные

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]


    Мультиплетная теория гетерогенного катализа, разработанная (1929) A.A. Баландиным, исходит из принципа структурного соответствия между расположением атомов в поверхности катализатора и в реагирующей молекуле, а также энергетического соответствия связей. Теория рассматривает, таким образом, не просто взаимодействие молекулы в целом с поверхностью катализатора, а взаимодействие отдельных атомов или атомных групп, содержащихся в молекулах реагирующих веществ, с атомами или ионами поверхностного слоя катализатора. [c.497]

    К первому и второму уровням иерархии относятся явления, происходящие на атомно-молекулярном и надмолекулярном уровнях-— это явления гомогенного и гетерогенного зародышеобразования. [c.7]

    Поверхностно-активными веществами (ПАВ) называются вещества, концентрирующиеся на поверхности раздела фаз гетерогенной системы и снижающие поверхностное (межфазное) натяжение. Молекулы ПАВ содержат гидрофильные атомные группы, обеспечивающие растворимость ПАВ в воде, и гидрофобные, чаще всего углеводородные атомные группы, которые при достаточно большой молярной массе способствуют растворению ПАВ в неполярных растворителях. С помощью ПАВ можно влиять на энергетическое состояние и структуру межфазной поверхности системы и этим регулировать свойства гетерогенных и микрогетерогенных систем. [c.284]

    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]


    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]

    Все реакции (некаталитические и каталитические) протекают, как было показано ранее, через образование промежуточных комплексов или переходных состояний. В гомогенных некаталитических процессах промежуточный комплекс состоит из исходных молекул реагирующих веществ в гомогенно-каталитических — из исходных молекул й атомно-молекулярных частиц катализатора в гетерогенно-каталитических реакциях такой комплекс образуется на границе раздела фаз и представляет собой поверхностное химическое соединение. Концентрация активного комплекса в реакциях обычно чрезвычайно мала. [c.203]

    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]


    Признанная многими мультиплетная теория Баландина (стр. 139)> вводит в представления об активных центрах фактор геометрического и энергетического соответствия между поверхностью и реагентами. Активные центры являются кристаллическими зародышами, скоплениями атомов, ориентированных на твердой поверхности и обладающих избытком свободной энергии. Они воспроизводят узлы кристаллической решетки металла, что облегчает протекание гетерогенных реакций. А. А. Баландин пишет ...каталитически активные центры—это атомная группа с определенной конфигурацией и с определенными энергетическими свойствами. Этот активный центр способен деформироваться под влиянием соседних атомов, природы их, числа и расположения, т. е. своего окружения. Деформированный центр имеет измененную связь с решеткой катализатора, меняется его энергия сублимации и способность притягивать и деформировать посторонние молекулы [21]. [c.111]

    При рассмотрении гетерогенных равновесий, как это было показано И. С. Куликовым, следует учитывать возможность того, что участники реакции в зависимости от условий равновесия могут находиться в различных состояниях (конденсированное, газовое, атомное, молекулярное и др.). Так, при диссоциации закиси железа может образоваться или твердое железо или его ненасыщенный пар по уравнениям [c.64]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Активность атомной фазы иа носителях подтверждена ири помощи нанесения гомогенных катализаторов на гетерогенные носители. (Об этом писал Н. И. Кобозев еще в 1939 г.) [c.7]

    Возможность зарождения двумерного зародыша, состоящего из одного слоя атомов, на чужеродной подложке невелика. Это может быть либо на активной сильно взаимодействующей подложке либо при очень больших пересыщениях, т. е. когда диаметр критического зародыша не превышает нескольких атомных размеров. В том случае, когда подложка идеальная (плоская, однородная и изотропная), образование зародышей равновероятно в любой ее точке. Но в большинстве случаев она неоднородна геометрически (ступени, углы, изломы, выходы дислокаций и т. п.), химически (различный состав ионов, адсорбция примесей) и электрически. Все это усложняет процесс гетерогенного зарождения кристаллика и затрудняет выяснение его закономерностей. [c.238]

    Гетерогенные высокодисперсные коллоидные системы в большинстве случаев существуют в виде дисперсий трехмерных и двухмерных структур как аморфных (включая жидкости), так и относящихся к различным кристаллическим решеткам — ионной, атомной, молекулярной или металлической. Дисперсионной средой обычно является нерастворяющая жидкость, реже газы. Наличие высокоразвитой поверхности раздела — наиболее характерная черта, общая для всех коллоидных систем этого рода. [c.23]

    Каждый из этих факторов обнаружен экспериментально с использованием современных методов исследования. Указан-ные гетерогенные и гомогенные реакции обусловливают нелинейную зависимость скорости цепного процесса от концентраций носителей цепей. Например, по ИК-спектрам идентифицированы те атомы и атомные группы на поверхности, которые появляются в ходе цепного горения и ответственны за важные наблюдаемые закономерности процесса в целом. Определены характерные времена гетерогенного развития цепей, оказавшиеся сравнимыми с временами гомогенных стадий. В частности, при горении водорода протекают следующие реакции (Н - адсорбированный атом водорода)  [c.428]

    В результате первых двух реакций адсорбированный атом водорода возвращается в газовую фазу в виде активного центра ОН. Таким образом, адсорбированный атом продолжает реакционную цепь в тех случаях, когда образующийся радикал НОз-вступает в реакцию с Н. Очевидно, что чем больше атомного водорода в объеме, тем большая доля радикалов НОг- вступит в реакцию с Н, а это значит, что эффективность гетерогенного обрыва цепей зависит от концентрации атомного водорода. Действительно, из этой реакционной схемы следует, что суммарная константа скорости гибели атомов Н на поверхности равна [c.428]

    В гетерогенно-каталитической реакции не исключается, что активным центром может выступать образование из нескольких атомов - л-атомный ансамбль , закрепленный на поверхности твердого тела адсорбционными силами (по теории активных ансамблей Н. И. Кобозева). [c.692]

    Первый тип — кероген с высоким содержанием водорода и низким кислорода (начальное атомное отношение Н/Сдт высокое — более 1,5 и 0/Сат низкое — менее 0,1) кероген в значительной части состоит из липидного материала, в нем преобладают алифатические структуры. Содержание полиароматических ядер и гетерогенных связей невелико. Кислород находится главным образом в сложноэфирных связях. Кероген формируется в основном за счет водорослевых и микробных липидов, он харак- [c.88]

    К первой ступени относятся явления, происходящие на атомно-молекулярном уровне и связанные с образованием кристаллической фазы — это гомогенное и гетерогенное зародыше-образование. Вторая ступень определяет кинетические закономерности роста отдельных граней кристаллов. Явления переноса количества движения, массы и энергии при взаимодействии дисперсных частиц с кристаллизуемой системой характеризуют третью ступень. Четвертая ступень связана с моделированием процесса массовой кристаллизации. Замыкает структурную схему пятая ступень, на которой рассматривается гидродинамика непосредственно дисперсных систем и вопросы разработки конструкций кристаллизаторов и создания методики их расчета. [c.12]

    Больщинство инструментальных методов исследования, используемых в атомной и молекулярной физике, аналитической химии и других смежных областях наук, позволяют получить информацию о составе и строении угольного вещества. Сложность угля как объекта исследования обусловлена его гетерогенностью на всех уровнях изучения строения вещества атомно-молекулярном (размеры порядка 0,1 —100 нм), микроскопическом (10—10 нм) и макроскопическом (10" нм). Причиной гетерогенности является отсутствие упорядоченности строения органической массы угля, состоящей из углеводородных и гетероатомных фрагментов, наличие в угольном веществе пор различных размеров, полых либо заполненных водой или органическим веществом, наконец, присутствие различных минеральных включений. В связи с этим для получения корректных представлений о структуре и свойствах исходного угольного вещества, о процессах с его участием, о составе твердых, жидких и газообразных продуктов, образующихся в результате этих процессов, необходимо использовать совокупность различных физических, химических и физико-химических методов. [c.64]

    Большинство авторов считает, что парамагнетизм углей обусловлен по крайней мере двумя типами парамагнитных центров [68] свободными радикалами и конденсированными ароматическими системами с делокализованными я-электрона-ми. Последние наиболее характерны для антрацитов, которые проявляют значительную анизотропию ё--фактора в спектрах ЭПР [69, 70]. Для ПЦ характерно неравномерное распределение по образцу, что отражает его гетерогенность. Как правило, фюзиниты дают сигнал ЭПР, заметно превосходящий по интенсивности сигнал витринитов, хотя ширина этих сигналов у фюзинита обычно меньше. Характерно, что для фюзинита не наблюдается какой-либо взаимосвязи между концентрацией ПЦ и атомным содержанием углерода в образце [45]. [c.79]

    Сравнительно недавно были сформулированы Н. А. Васюниной А. А. Баландиным и Р. Л. Слуцкиным положения о системе катализаторов, действующих при гидрогенолизе углеводов и много атомных спиртов [52, 53], — о гомогенном катализаторе разрыва связи С—С (крекирующем агенте) и гетерогенном катализатор гидрогенизации. В то же время было открыто каталитическое дей ствие в этой реакции растворимых соединений металлов, наприме сульфата железа, хелатного комплекса железа с сахарными кисло тами, сульфата цинка и др., названных гомогенными сокатализа торами гидрогеиолиза [54, 55]. Механизм их действия рассмотре в гл. 3 добавление гомогенных сокатализаторов ускоряет гидроге нолиз в 2—3 раза с получением гидрогенизата примерно таког( же состава, как и без их применения. [c.122]

    Как мы уже отмечали, макрорадикальный характер твердых тел атомного строения предопределяет их высокую химическую активность, которая проявляется в виде хемосорбции. Но хемосорбция часто является только первым актом дальнейших сложных процессов. К таким процессам относятся, например, процессы молекулярного наслаивания, позволяющие осуществлять направленный синтез атомных твердых веществ с гарантированной воспроизводимостью. Но еще задолго до использования этих процессов внимание исследователей и производственников привлекали процессы гетерогенного катализа, относительно которых известно, что они также начинаются с актов хемосорбции, по крайней мере одного из катализируемых веществ. В определенных случаях твердое тело играет только роль инициатора (или, нередко, ингибитора) реакции, которая при этом развивается по законам цепных реакций, открытым Н. Н. Семеновым. Зная, что твердое тело является макрорадикалом, нетрудно себе представить, что соударение с ним молекул должно непрерывно генерировать радикалы — осколки этих молекул, обладающие неспаренными электронами, если свободные валентности твердого тела возрождаются. То же условие самовозобновления макрорадикала, а в более общем случае самовоспроизведение определенного набора функциональных [c.244]

    Анализ гетерогенных равновесий показывает, что непременным условием их существования является наличие границы раздела фаз. Состояние атомов или молекул на границе отличается от состояния в объеме фаз вследствие нескомпенсиро-ванности атомных полей частиц, выходящих на поверхность. Состояние поверхности и поверхностные силы играют существенную роль в тех случаях, когда поверхность сильно развита, например, при раздробленном мелкодисперсном состоянии вещества либо при получении его в виде тонких пленок, когда сфера действия приповерхностных сил соизмерима с толщиной пленок. Следует отметить, что при анализе гетерогенных равновесий предполагается, что каждая фаза во всех ее точках совершенно однородна, т. е. состав ее всюду одинаков. В действительности вблизи поверхности раздела двух фаз это условие не соблюдается и концентрации компонентов отличаются от концентраций в объемах сосуществующих фаз. Например, концентрация газа у поверхности какой-пи-будь твердой или жидкой фазы возрастает — положительная адсорбция. Обратный случай — уменьшение концентрации какого-либо компонента вблизи поверхности раздела — называют отрицательной адсорбцией. [c.331]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]

    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]

    При образовании ограниченных твердых растворов изотермы состав — свойство в пределах области гомогенности имеют вид плавных кривых, в гетерогенной области — аддитивных прямых (рис. ПО). При отсутствии взаимодействия (расслоение) свойства каждой фазы в твердом состоянии остаются постоянными. От расслоения к непрерывным твердым растворам возрастает химический вклад во взаимодействие. Этот вклад, однако, определяется фактором низшего порядка — размерным, поэтому взаимодействие не приводит, как прави.яо, к образованию химических соединений. В самом деле, основным критерием образования непрерывных твердых растворов является сходство физико-химического характера взаимодействующих компонентов, что определяется близостью значений ОЭО, электронного схроения и типа химической связи. Кроме того, в соответствии с правилом Руайте размеры атомов при. этом не должны различаться более чем на 8 — 15%, что с учетом подобия остальных факторов предопределяет одинаковый тип кристаллической решетки. Если при сходстве электронных конфигураций и значений ОЭО атомные размеры компонентов отличаются более значите.пьно, то вместо непрерывных образуются ограниченные твердые растворы с возникновением между ними гетерогенной области — эвтектической смеси. Образование эвтектики возможно и тогда, когда атомные размеры компонентов близки, а электронное строение различно. Это различие не должно возрастать настолько, чтобы существенным становился вклад электроотрицательности, поскольку тогда возможно образование химических соединений. [c.214]

    Известно, что чем меньше радиус частицы, тем выше химический потенциал ее атомов и, следовательно, выше растворимость, подчиняющаяся уравнению Томсона—Фрейндлиха [104 ]. Однако этот эффект, обусловленный свободной энергией на поверхности раздела, имеет значение только для тел с большой удельной поверхностью. Расчет по указанному уравнению для типичного материала с. атомной массой 50, плотностью 10 г/см и свободной поверхностной энергией 5(10 Дж/см показывает, что влияние размера частиц на растворимость начинает существенно проявляться только при радиусах кривизны менее 5 А. Сказанное полностью относится к растворению микровыступов на поверхности металла преимущественное растворение их относительно гладкой поверхности возможно только в случае очень острых микронеровностей, радиус закругления которых не превышает 5 А. Очевидно, в общий баланс гетерогенной реакции такие субмикровыступы не внесут заметного вклада, так как растворятся в первую очередь при очень малом материальном выходе. [c.171]

    При гетерогенном катализе, так же как и при гомогенном, реакция ускоряется в результате открытия нового реакционного пути, требуюшего меньшей энергии активации. Изменение реакционного пути происходит благодаря промежуточному химическому взаимодействию реагирующих веществ с катализатором. При гетерогенном катализе промежуточные соединения возникают на поверхности катализатора, не образуют отдельных фаз и не обнаруживаются химическим анализом. Свойства этих поверхностных соединений отличаются от аналогичных объемных. Так, энергия связи в каталитических поверхностных соединениях меньше, чем в объемных молекулах, что обусловливает непрочность этих соединений. Возможны молекулярные, атомные и ионные поверхностные соединения с различными типами связи. Для цепных реакций катализ имеет"гетерогенно-гомогенный характер, т. е. на поверхности катализатора возникает радикал (гетерогенный акт), который и возбуждает цепную реакцию в объеме газа или жидкости (гомогенный акт). [c.224]

    Селективное распыление возникает также, если в образце содержатся фазы различного состава (например, сплавы с фазами включения), характеризующиеся различными выходами продуктов распыления. Кроме того, коэффициенты распыления на границах зерен обычно выше, чем в центре фазы. Как следствие, различные компоненты удаляются с различной скоростью и, таким образом, состав выходящего потока частиц уже не соответствует среднему содержанию этих компонентов в образце. В этом случае можно наблюдать изменение поверхности (образование ступеньки или конуса) в распыляемой зоне. При количественном анализе таких гетерогенных образцов возникает ряд проблем. Кроме того, из-за шероховатости поверхности существенно ухудшается разрешение по глубине. На рис. 10.3-7 приведено изображение (полученное с использованием атомно-силового микроскопа, см. разд. 10.5.2) дна кратера поверхности многослойного образца AlGaAs/GaAs, деформированной в результате травления при анализе методом МСВИ (глубина кратера 1,2 мкм). Первоначально поверхность пластины была плоской со средней шероховатостью (разность высот пик-впадина) 14 нм. На изображении просматривается характерная чешуйчатая структура со средней шероховатостью около 105 нм. [c.356]

    Условие независимости состояния макросистемы от особенностей ее микросоставляющих соблюдается для синтетических полимеров, в том числе гетерогенных поли-а-аминокислот со случайными порядками, но пе соблюдается для природных аминокислотных последовательностей. В доказательном плане и достаточно подробно этот вопрос рассмотрен во введении книги и главе 2. Там показано, что причина исключительной роли белков в процессах жизнедеятельности заключается в особой, присущей только им молекулярной структурной самоорганизации. Среди компонентов биосистем молекулярного уровня и известных искусственных полимеров лишь белковые последовательности способны самопроизвольно свертываться в строго детерминированные трехмерные структуры, геометрия и конформационные возможности которых полностью определяются в физиологических (нативных) условиях составом и порядком аминокислотных остатков в цепи. В настоящее время неизвестен какой-либо другой класс полимерных соединений, наделенных такой же уникальной способностью. Это не значит, что такие полимеры не могут быть созданы в будущем, но у них, как и у белков, должна существовать неразрывная связь между макроскопическим поведением и химическим строением атомных групп мономерных звеньев. Отказ от атомных деталей и реального химического строения белковых молекул делает в прип- [c.498]

    Исследования металлорганических комплексов с установленной структурой, а также промежуточных соединений и переходных состояний этого типа проливают новый свет на возможные механизмы гетерогенных реакций, катализируемых переходными металлами, их сплавами и оксидами многие пз подобных процессов имеют большое значение в промышленности. Взаимосвязь гомогенных и гетерогенных каталитических процессов кратко рассмотрена в работах [1, 29]. В настояи1,ес время очевидно, что определяющим фактором в обоих процессах является наличие координационно ненасыщенных металлов нли активных поверхностных центров. При этом в случае как чистых, так и нанесенных па нейтральную поверхность металлов илн их оксидов, обладающих каталитической активностью, соседние атомы металла, кислорода и (или) инертного носителя следует рассматривать как лиганды, ассоциированные с атомом металла, ведущего каталитический процесс. Как и атомные или молекулярные лиганды, присоединенные к атому металла гомогенного комплекса, поверхностные лиганды долж- [c.242]

    Немецкая фирма в своем патенте описывает окисление бензола в фенол в гетерогенно-паровой фазе при пропускании паров бензола в смеси с воздухом над катализаторами, представляющими собой окисные соединения металлов, которые на кривой атомных объемов находятся на минимумах больших периодов или вблизи минимумов. Подходящими катализаторами таким образом оказываются окислы Сг, Мо, W, и, V, Nb, Та, Ti, происходящие от этих металлов кислоты или соли, например молибдат меди, ванадат серебра, вольфрамат цинка. К окислам возможна добавка других металлов — Fe, u, Ag — или окислов AUOg, aO или карбонатов, фосфатов и других солей. Воздух предпочтительно разбавить (до содержания [c.511]

    Следовые концентрации H l в пробах воздуха устанавливают путем перевода газообразного НС 1 в его производные и определения образующихся веществ. Этот метод основан на гетерогенной реакции газообразного НС1 с СрОд с образованием PO2 I21 последующим разложением его и атомно-аб-сорбционном определении Сг. [c.123]

    Большое влияние на развитие теории гетерогенного катализа сыграли также работы Н. И. Кобозева - основоположника теории активных ансамблей (1939 г.), согласно которой ответственной за активность катализатора является докристаллическая фаза - атомные группы, удерживающиеся на поверхности твердого тела. [c.636]


Смотреть страницы где упоминается термин Гетерогенные атомные: [c.46]    [c.506]    [c.293]    [c.120]    [c.159]    [c.377]    [c.389]    [c.46]    [c.202]    [c.242]   
Кинетика и катализ (1963) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Евдокимов. К вопросу об атомной природе активных центров гетерогенных катализаторов



© 2024 chem21.info Реклама на сайте