Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки молекулярная масса, определени

    Белки относятся к высокомолекулярным соединениям. Молекулярная масса их 20 000 и даже 15 000 000 у. е. Они растворяются в воде, образуя коллоидные растворы (вследствие огромных размеров молекул). Белки устойчивы лишь в определенных условиях. При повышении температуры происходит необратимая коагуляция белков, а под действием электролитов — обратимая. Первая характерная для белков реакция ксантопротеиновая—реакция с азотной кислотой. Под действием азотной кислоты белок свертывается, образуя сгусток оранжевого цвета. Вторая характерная реакция на белки — это биуретовая реакция — фиолетовое окрашивание белка при взаимодействии его с гидроксидом меди. [c.371]


    Ультрацентрифугирование растворов полимеров. Ультрацентрифуги, в которых развиваются центробежные ускорения, превышающие ускорение силы тяжести в десятки тысяч раз, широко применяются для изучения свойств макромолекул в растворах. Впервые этот метод был использован Т. Сведбергом для определения молекулярных масс белков. [c.153]

    Метод определения молекулярной массы по величине осмотического давления нашел широкое распространение для высокомолекулярных веществ. Измерение величин других коллигативных свойств в этом случае нецелесообразно, так как закон Рауля выполняется только при очень малых концентрациях растворенных высокомолекулярных веществ, при которых чувствительность мала например, 0,001 т раствор белка с молекулярной массой М=10 000 дальтон содержит 1 г вещества в 100 г воды. [c.147]

    В 1923 г. шведский химик Теодор Сведберг (1884—1971) сконструировал центрифугу и разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков. [c.128]

    Для проведения седиментометрического анализа кинетически устойчивых систем (золей, растворов ВМВ) с целью определения размеров и массы их частиц недостаточно силы земного тяготения. Последнюю заменяют более значительной центробежной силой центрифуг и ультрацентрифуг. Идея этого метода принадлежит А. В. Думанскому (1912), который впервые применил центрифугу для осаждения коллоидных частиц. Затем Т. Сведберг разработал специальные центрифуги с огромным числом оборотов, названные ультрацентрифугами. В них развивается центробежная сила свыше 250 ООО Современная ультрацентрифуга представляет собой сложный аппарат, центральной частью которого является ротор (с частотой вращения 60 000 об/мин и выше), с тончайшей регулировкой температуры и оптической системой контроля за процессом осаждения. Кюветы для исследуемых растворов вмещают всего 0,5 мл раствора. В ультрацентрифуге оседают не только частицы тонкодисперсных золей, но и макромолекулы белков и других ВМВ, что позволяет производить определение их молекулярной массы и размеров частиц. Скорость седиментации частиц в ультрацентрифуге рассчитывают также по уравнению (23.9), заменяя в нем g на о) х, где (О — угловая скорость вращения ротора л — расстояние от частицы до оси вращения. [c.378]

    Концентрация раствора эквивалентна 20 г белка на 1 кг воды, но вследствие высокой молекулярной массы моляльность раствора оказывается равной всего 0,0016. Поэтому Т = - 1,86 0,0016 = - 0,003°С, по эта величина слишком мала для точного определения молекулярной массы. [c.145]


    Молекулярная масса белков изменяется в широких пределах в зависимости от природы белка. Молекулярные массы, определенные различными методами, иногда не совпадают. Все же можно оцепить молекулярные массы распространенных белков следующими чпслами  [c.55]

    Гель-хроматографию используют для определения молекулярных масс (М) белков, полимеров, углеводородов и др. При этом используют линейную зависимость объемов выхода вещества от его молекулярной массы  [c.240]

    Механизм биосинтеза белков со всем многообразием их биологической активности и видовой специфичности был одной из крупнейших проблем в истории биохимии. В течение многих лет невозможно было ответить даже на очень простые вопросы относительно белкового синтеза. Например, образуются ли белки сразу как одно целое или же создаются путем сборки из множества коротких предварительно синтезированных пептидов Или такой вопрос может быть, все белки клетки образуются из одного длинного полипептида-предшественника в результате специфических изменений его боковых (К) групп До начала 1950-х годов не было достоверно установлено даже то, что белки-это индивидуальные химические соединения с определенной молекулярной массой, определенным аминокислотным составом и определенной последовательностью аминокислотных остатков. [c.926]

    Некоторые физические свойства белков (молекулярная масса, двойное лучепреломление, подвижность в электрическом поле) рассмотрены вьппе. Кроме них, для белков характерны оптические свойства, заключающиеся в способности вращать плоскость поляризации света (оптическая активность белков), рассеивать световые лучи ввиду значительных размеров белковых частиц и поглощать ультрафиолетовые лучи. Перечисленные оптические свойства белков используют при их количественном определении, измерении молекулярной массы и т. п. [c.79]

    Правильная ориентация активированных аминокислот на матричной РНК—м-РНК достигается в частицах с молекулярной массой около 3-10 —так называемых рибосомах. На поверхности рибосомы определенные участки фиксируют в оптимальном расположении активированные аминокислоты (включающие и т-РНК, и м-РНК) и продукт реакции, т. е. белковую цепочку. Для синтеза кроме особых ферментов требуется еще присутствие ионов магния. Рибосома — двойная частица рибосома кишечной палочки имеет общий размер около 20,0 нм, причем одна из составляющих рибосому частиц примерно в два раза больше другой свойства этих частиц (константы седиментации) не вполне одинаковы. Оба типа частиц содержат РНК и белки в основном структурного типа. Матричную функцию выполняют лишь м-РНК, доля которой от общего содержания РНК в рибосомах довольно мала (несколько процентов). [c.392]

    Все перечисленные особенности коллоидных растворов являются препятствием для применения к ним и таких методов, как криоскопия и эбулиоскопия. В отличие от лиофобных золей растворы высокомолекулярных веществ (т. е. лиофильные коллоиды) уже при сравнительно небольших концентрациях показывают измеримые величины осмотического давления. Это привело к разработке ряда методов определения молекулярной массы для веществ с М от 10 тыс. до 200—300 тыс, а в особых случаях до 1 млн., включая такие важные вещества, как белки, каучуки, полисахариды и т. д. [c.374]

    В белке содержится X % аминокислотного остатка определенного строения. Чему равна наименьшая молекулярная масса белка, если в нем содержится 1) 17% Gly 2) 12,6% Ala 3) 8,1% Pro 4) 0,4% Phe  [c.393]

    Для хроматографического фракционирования смеси молекул, не сильно различающихся по своим массам, следует ориентироваться на линейный участок графика селективности, так чтобы для крайних значений молекулярных масс разделяемой смеси веществ значения оставались в интервале 0,2—0,8. То же самое относится и к определению самих молекулярных масс методом гель-фильт-рации. Впрочем, если это определение ведут в денатурирующем буфере (6 М раствор гуанидинхлорида), то надо учесть, что благодаря рыхлой упаковке денатурированных биополимеров вся область фракционирования смещается в сторону меньших значений молекулярных масс, чем те, которые приведены в таблицах для нативных глобулярных белков. Коррекцию на деформацию (и изменение размеров) белков следует вводить и в случае использования детергентов, применяемых для улучшения растворимости. Детергенты разворачивают белковые глобулы, увеличивая их эффективные размеры, и, кроме того, связываются с белками, что приводит иногда к заметному увеличению массы. [c.134]

    ГПХ часто используют для определения молекулярно-массового распределения полимеров и нахождения радиуса частиц. Для этой цели с помощью стандартов полистирола строят градуировочные графики зависимости логарифма молекулярной массы от объема элюирования. При помощи полученной кривой можно определить концентрации частиц определенного размера в анализируемой смеси. Очень широко ГПХ используют в биологии для выделения и очистки полипептидов, белков и других макромолекул. [c.610]


    Все молекулы определенного белка идентичны и, следовательно, имеют одинаковую относительную молекулярную массу, которая в зависимости от типа белка составляет от десятков до сотен тысяч, а иногда и больше. В этом заключается отличие белков от некоторых других природных полимеров (например, целлюлозы или синтетических полимеров), макромолекулы которых имеют разную длину (хотя и получены регулярным повторением одной и той же структурной единицы), а значит, могут иметь разную относительную молекулярную массу. [c.192]

    Такая методика исследования применялась для определения молекулярной массы белков и нуклеиновых кислот и для изучения их строения в адсорбционном слое. Этот метод позволяет получить ценные сведения о конформации молекул в поверхностном слое, поскольку эта последняя определяет величину площади, занимаемую ими в двухмерной пленке. Чтобы не вводить поправку на взаимное притяжение молекул в адсорбционном слое, эти измерения проводят в той области значений pH, в которой молекулы заряжены вследствие ионизации. Конформация белка зависит от pH среды, которое определяет диссоциацию ионогенных групп и их гидратацию. При изменении pH изменяется и наклон прямых т. е. величина (рис. П-19). [c.80]

    Измерение осмотического давления является одним из методов определения молекулярных масс, позволяющих в современных мембранных осмометрах определять М. до 10 (каучук, целлюлоза, белки). [c.192]

    Некоторые коллоиды состоят из вполне определенных молекул с постоянной молекулярной массой и вполне определенной молекулярной формой, что позволяет им образовывать кристаллическую структуру. Белки имеют молекулярную массу от десяти до нескольких сот тысяч. [c.269]

    В результате химического изучения вирусов растений было показано, что они состоят главным образом из белков и нуклеиновых /смс-лот —веществ, природа которых рассмотрена в данной и последующей главах. Вирусные частицы или гигантские молекулы — с молекулярной массой порядка 10 000 000 —можно описать как агрегаты меньщих мо лекул, связанных между собой определенным образом. [c.383]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]

    При данной пористости (концентрации) геля описанная выше линейная зависимость имеет место только для белков, молекулярные массы которых лежат в определенном интервале. Слишком крупные для данного геля белки, очевидно, вовсе не смогут мигрировать в нем. Подвижности слишком малых белков, для которых поры геля практически не создают препятствий, будут зависеть не от их молекулярной массы, а только от отношения заряда к массе. Как указывалось, в присутствии ДДС-Ма это отношение одинаково для большинства белков. Для ориентировки можно назвать некоторые цифры. Так, для одинаково сшитых гелей (С=3,3) были рекомендованы следующие значения Т в зависимости от молекулярной массы белков (М) [Оипкег, Ниескег , 1969]  [c.59]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Довольно много измерений такого рода было проведено с яичным альбумином. Это один из сравнительно простых белков, который поддается тщательной очистке. Первые измерения с монослоями яичного альбумина и других белковых веществ, включая и определение их молекулярной массы, были осуществлены Гуа-сталла в 1945 г. со специально сконструированными поверхностными весами с чувствительностью 0,001 дин ( ). Он показал, что только при очень сильном разрежении поверхностного слоя (100 м /мг) зависимость двумерного осмотического давления от площади удовлетворяет уравнению состояния идеального монослоя. При этих условиях было установлено, что молекулярная масса яичного альбумина равна М = 40 ООО. В 1947 г. Булл, используя другой раствор-подложку (концентрированный водный раствор сульфата аммония вместо употреблявшейся Гуасталла подкисленной воды), добился существенного расширения области идеального двумерного состояния (до 1,5 м /мг). Из своих измерений, более точных, чем измерения Гуасталла, он нашел М = 44 ООО. В 1951 г. Мишук с помощью предложенной им более удобной измерительной системы и для гораздо более тщательно очищенного яичного альбумина получил М = 44 900 (на подложке из концентрированного раствора карбоната аммония). Полученная Мишу-ком кривая зависимости я от площади (в кв. метрах на 1 мг нанесенного вещества) показана на рис. 32. [c.131]

    В современных мощных ультрацентрифугах оседают пе только кол.чоидные частицы гидрофобных коллоидов, но и молекулы белков и других высокомолекулярных соединений. Помимо очистки, метод ультрацентрифугирования широко применяется в настоящее время для определения среднего радиуса коллоидных частиц, а также для вычисления молекулярной массы высокомолекулярных соединений. Практически все выдающиеся достижения молекулярной биологии обязаны, этому методу. Следует отметить, что работа с ультрацентрифугой очень сложна и кропотлива, так как требует тщательного учета влияния многих побочных факторов. [c.294]

    За последние годы в связи с возросшей необходимостью анализа и разделения смесей сложных веществ получила значительное развтие ситовая хроматография (гель-проникающая, гель-фильтра-ционная, молекулярно-ситовая). В качестве подвижной фазы в этом случае используются только жидкости, а неподвижной фазой являются материалы с заданной пористостью, способные избирательно удерживать молекулы веществ с определенными размером и формой. Так, например, в качестве фильтрующих материалов используются сшитые гидрофильные полимеры (гели), обладающие строго регулярной пространственной структурой. При пропускании через гель водных растворов белков или других водорастворимых биологических материалов удается удерживать внутри решетки геля молекулы определенного размера, а более крупные молекулы беспрепятственно вымываются подвижной фазой. При этом компоненты смеси элюируются в порядке уменьшения молекулярной массы. [c.49]

    Поэтому было предложено различать пенообразователи по их структурирующему действию. К первой группе относятся вещества с низкой молекулярной массой (спирты, кислоты, амины, фенолы и др.), в растворах которых структурообразование практически отсутствует, а междупленочная жедкость быстро истекает. Вторую группу составляют мыла, синтетические коллоидные поверхностно-активные вещества, белки и другие водорастворимые высокомолекулярные соединения. Они образуют пены, в которых к определенному моменту времени резко замедляется истечение меж-дупленочной жидкости. Возникающий в таких системах структурный каркас обеспечивает устойчивость пен. [c.194]

    Гель-хроматография применяется, как уже указывалось, при обессиливании растворов (малые по размеру ионы солей проникаю в поры ге я и удерживаются там), для группового разделения высокомолекулярных и низкомолекулярных органических соединений (например, глицериде в жирных кислот с молекулярной массой около 200—500), в анализе биологических объектов (часто с использованием буферных систем с целью предотвратить разрушение ферментоп), для определения молекулярной массы белков (в том числе содержащихся в сыворотке К]ювп, в спинн( -мозговой жидкости), углеводородов и др)гих вещеста. [c.285]

    Число аминокислотных остатков, входяшд4Х в молекулы отдельных белков, весьма различно в инсулине их 51, в миоглобине - около 140. Поэтому и молекулярная масса белков колеблется в очень широких пределах - от 10 ООО до нескольких миллионов. На основе определения молекулярной массы и элементного анализа установлена эмпирическая формула белковой молекулы - гемоглобина крови [c.419]

    Такая методика исследования применялась для определения молекулярной массы белков и нуклеиновых кислот и для изучения их строения в адсорбционном слое этот метод позволяет получить ценные сведения о конформации молекул в поверхностном слое, поскольку эта последняя олределяет величину площади, занимаемую ими в двухмерной пленке. Чтобы преодолеть вазимное шритяжение молекул в адсорбционном слое, эти измерения проводят в той области значений pH, в которой молекулы заряжены вследствие ионизации. Электростатическое отталкивание несколько увеличивает эффективный размер молекул, но это влияние, как правило, невелико, и им пренебрегают. Более существенно заряд молекулы влияет на конформацию молекулы белка и площадь, занимаемую ею на поверхности. Соответственно конформация белка зависит от pH среды, так как величина pH определяет диссоциацию ионогенных групп и их гидратацию. При изменении pH изменяется и наклон прямых л5м(л) (см. рис. II—19), т. е. величина 51. [c.66]

    Гель-фпльтрацию широко используют для определения молекулярных масс биополимеров, особенно белков. Чем меньше белок, тем больше объем элюции его с колонки (Fr) это, как мы видели,— основной закон гель-фильтрации. Графики селективности ясно указывают иа наличие линейной связи между логарифмом молекулярной массы белка (log М) и величиной Ка (или К ) в определенном интервале значений М для каждого типа геля. Казалось бы, задача этим решается. Достаточно определить в эксперименте значение для данного белка — и с помощью фирменного графика селективности можно будет найти log М, а следовательно, и М. Если довольствоваться весьма приближенным результатом, то можно так и поступить. Однако при более пристальном изучении этой проблемы с целью получить относптельно точные значения М она оказывается значительно слояшее. Прежде всего, фирменные графики селективности носят ориентировочный характер, и для разных партий одного и того же геля истинные зависимости log М от Кдч отличаются друг от друга. Это можно обойти, если построить самому такой график (калибровочную прямую) с помошью набора белков известной массы. Но тут-то и возникает главная трудность. Какие белки выбрать для такого построения Ответа на этот вопрос поищем сначала для случая нативньсх белков. [c.145]

    Отсюда следует вывод, что определение молекулярной массы нативиых белков с помощью гель-фильтрации, даже проведенное на уровне описанного выше современного подхода к этой задаче, может дать лишь приближенный результат. Тем более это справедливо в случае весьма распространенного упрощенного способа использования калибровочных кривых, построенных по молекулярным массам маркерных белков без учета их формы. То же относится к определению гель-фильтрацией молекулярных масс нативных нуклеиновых кислот с помощью маркерных НК известной массы, когда в число таких маркеров тРНК включают наряду с рибосомаль-пыми РНК, а нередко и фрагментами ДНК. Говорить же серьезно [c.150]

    Ввиду этого, прежде чем перейти к описанию определения методом гель-фильтрацпи молекулярных масс деиатурироваиных белков, имеет смысл в качестве иллюстрации кратко процитировать хотя бы три практически полезных примера определения молекулярной массы нативных белков и пептидов. [c.151]

    Белев и соавторы для определения молекулярных масс денатурированных белков методом гель-фильтрацип использовали сефакрил S-200 Superfine . Колонку размером 1,6 х ЮО см калибровали четырьмя полипептидами с известным числом аминокислотных остатков N) — от 71 (токсин) до 579 (БСА). Элюцию вели 6 М водным раствором гуанидинхлорида (pH 5) со скоростью 3 мл/см -ч. Для точности объем элюента определяли по весу. График селектив- [c.153]


Смотреть страницы где упоминается термин Белки молекулярная масса, определени: [c.163]    [c.170]    [c.61]    [c.300]    [c.160]    [c.351]    [c.211]    [c.175]    [c.112]    [c.140]    [c.150]    [c.151]    [c.151]    [c.152]   
Физическая Биохимия (1980) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Белки молекулярный вес

Белки определение молекулярной массы

Масса белка

Масса определение

Молекулярная масса

Молекулярная масса определение

Молекулярный вес (молекулярная масса))

Молекулярный вес, определение



© 2024 chem21.info Реклама на сайте