Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и физические свойства аминокислот

    Структура и физические свойства аминокислот 252 [c.11]

    Подобная структура объясняет физические свойства аминокислот. У них высокие температуры плавления (200...300 °С), они не испаряются, а разлагаются, обладают большими дипольными моментами. Аминокислоты не растворяются в неполярных органических растворителях, но довольно хорошо растворимы в воде. Константы кислотности и основности у них очень малы. [c.514]


    Аминокислоты отличаются друг от друга структурой боковых групп (боковых цепей), которые в приведенных выше формулах обозначались через К. Эти группы имеют разную химическую структуру. Они выступают из основной цепи и формируют в значительной степени поверхность полимера, определяя многие химические и физические свойства белков. [c.83]

    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]


    Лишь очень немного определенных изменений химических свойств наблюдалось как результат облучения. Значительные изменения физических свойств могут быть вызваны незначительными химическими изменениями, которые слишком малы для их обнаружения. Таким образом, о радиационной химии белков известно очень мало. Нельзя сказать, что в этом вопросе у нас меньше знаний, чем в области синтетических полимеров, которые мы рассматривали в предыдущих главах. Но исследователи, работающие с биологическими полимерами, находятся в невыгодном положении из-за незнания точной структуры вещества, т. е. последовательности расположения аминокислот в молекуле белков, за исключением инсулина [59]. По этой причине точные сведения в этой области накапливаются сравнительно медленно. Представляется, что детальное исследование результатов облучения инсулина было бы особенно перспективным. Начало в этом направлении уже положено. Подробнее на этом мы остановимся ниже. [c.225]

    От ДЛИНЫ, объема и взаиморасположения радикалов аминокислот, составляющих белковую молекулу, зависят объем, форма и рельеф поверхности белковой частицы. Радикалы гли, ала, вал, лей. иле. фен та три неполярны, а остальных аминокислот—полярны в той или иной мере. Это определяет степень растворимости белков р различных растворителях. Таким образом, разнообразие радикалов аминокислот по химической природе и физическим свойствам тесно связано с полифункциональностью и специфическими особенностями белковых тел. Именно эти свойства выделяют белки из ряда других природных биополимеров и наряду с другими особыми их качествами (биокаталитическая активность, образование сложных комплексов с другими биополимерами, способность образовывать надмолекулярные структуры, денатурация и ренатурация, динамические переходы между глобулярным и фибриллярным состоянием, неисчерпаемое разнообразие и вместе с тем высокая специфичность структуры молекул и т. п.) обеспечивают им роль материальной основы жизненных процессов. [c.44]

    В случае каучука и целлюлозы задача значительно упрощалась тем, что в результате деструкции получалось небольшое число сравнительно легко разделяемых соединений. Относительно просто было также установлено положение связей, соединяющих элементарные звенья. При изучении структуры таких сложных высокомолекулярных соединений, как белки (с. 329), продукты деструк ции которых содержат более двух десятков различных аминокислот, к тому же трудно разделяемых, ценность обычных методов деструкции значительно меньше. Поэтому наряду с исследованием продуктов деструкции необходимо изучать свойства и поведение самих макромолекул. При этом используются преимущественно не химические, а физические и физико-химические методы [5—8]. Проблема настолько сложна, что достаточно надежные сведения [c.15]

    Это тотчас же подводит нас ко второй трудности каждое антитело представляет собой глобулин, т. е. белок, и их синтез подчиняется общим законам белкового синтеза, которым мы уделили так много внимания в первой главе. Глобулины антител не отличаются ни по физическим, ни по химическим свойствам от прочих глобулинов, не наделенных функциями антител. Известно, что путь белкового синтеза от источника генетической информации (ДНК) проходит через РНК и рибосомы, а конечная конфигурация (вторичная и третичная структура) полипептидной цепи всецело определяется генетически детерминированной последовательностью аминокислот где же, на каком этапе в таком случае остается для антигена или исходящей от него информации возможность для вмешательства Очевидно, это не первичная (последовательность аминокислот) и не вто- [c.345]

    Поскольку молекулярные веса белков варьируют в широких пределах, такого рода формулы не совсем пригодны для сравнения соотношений различных аминокислот в белковой молекуле. Надо, однако, указать, что именно эти соотношения определяют физические и химические свойства белков, поскольку последние зависят главным образом от структуры боковых цепей К в пептидных группировках. [c.42]

    Физическая консистенция, структура и физико-химические свойства пищи. Проблема искусственной пищи включает в себя весьма обширный и сложный комплекс задач по приданию необходимой структуры искусственному пищевому продукту, создаваемому как из смеси аминокислот, так и из белка любого происхождения, а также по приданию ему определенных физико-химических свойств [24], в том числе определенного вкуса, аромата. [c.520]

    Каждый белок обладает характерным набором кислот, расположенных в линейной или разветвленной последовательности, которая обусловливает физические и химические свойства, присущие данному белку. Хотя белки не будут рассматриваться здесь, поскольку важность, интерес и объем материала, связанного с белками, требует монографической полноты нри их обсуждении, пожалуй, стоит перечислить структуры аминокислот, образующихся при гидролизе белков. В табл. 21.1 приведены двадцать нять аминокислот, входящих в состав белков. Десять из них являются незаменимыми в том смысле, что, хотя все аминокислоты необходимы для нормального развития высших организмов, последние неспособны сами осуществлять синтез незаменимых аминокислот, и поэтому эти аминокислоты должны входить в состав белков пищи высших организмов. [c.524]


    Первичная структура белков. На рис. 2-1, В показано, что три аминокислоты (аланин — Ала, аспарагиновая кислота — Асп и лейцин — Лей) соединены в следующем порядке — Aлa-A п-Лeй, образуя полипептид. Однако те же самые аминокислоты могут быть соединены шестью различными способами Ала-Асп-Лей, Ала-Лей-Асп, Асп-Ала-Лей, Асп-Лей-Ала, Лей-Ала-Асп, Лей-Асп-Ала. Хотя каждый из трипептидов построен из одних и тех же субъединиц, физические и химические свойства их несколько отличаются, т. е. они представляют собой шесть разных химических соединений. Из четырех разных аминокислот (папример, из трех прежних плюс валин) можно было бы получить 24 тетрапептида. В молекуле белка аминокислоты могут располагаться в любом порядке, причем каждая аминокислота может неоднократно повторяться в цепи. Исходя из этого, легко представить себе, что, хотя во всех белках используются одни и те же субъединицы, число их сочетаний астрономически велико другими словами, возможно создание невероятно большого числа белков, причем каждый будет иметь свойства, хоть немного отличающиеся от свойств других белков. Для многих белков уже известна полная последовательность аминокислот. Аминокислотная последовательность одного из таких белков — гормона инсулина — показана на рис. 2-2. Молекула инсулина состоит из двух полипептидных цепей, одна из которых содержит 30 аминокислот, другая — 21. Обе цепи соединены дисуль-фидными связями. Дисульфидные связи образуются благодаря тому, что в состав аминокислоты цистеина (Цис) входит атом серы и две молекулы цистеина связываются двумя атомами серы (рис. 2-2). [c.20]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]

    Большое сходство в химических и физических свойствах между синтетическими полипептидами Фишера и некоторыми белками (протеинами) оказало дальнейшую поддержку предположению, ранее выдвинутому Фишером и независимо от него Хофмейстером в 1902 г. о пептидном строении белков (протеинов). Эта теория предполагала, что молекула белка (протеина) построена только из цепей а-аминокислот (и позже, конечно, были включены а-ими-нокислоты), связанных друг с другом пептидными (амидными) связями между а-амино- и а-карбоксильными группами [см. формулу (1)].Сам Фишер учел, что возможны и другие способы соединения между аминокислотами в молекуле белка (протеина) и добавил к имеющимся сомнениям вопросы о размере и сложности природных белков, что вызвало в период 1920—1940 гг. различные предположения [3] об альтернативных способах связи между остатками аминокислот. Сэнджер [4] писал в 1952 г., что самым убедительным доводом в поддержку пептидной теории строения белков (протеинов) в действительности было то, что с 1902 г.— со времени ее возникновения, не были найдены опровергающие ее факты сам Сэнджер привел одно из первых убедительных доказательств этой теории, установив полную структуру белкового гормона инсулина. [c.218]

    Белки характеризуются прежде всего первичной структурой, т. е. последовательностью остатков аминокислот. Однако для веществ с большим молекулярным весом имеют значение и другие факторы, приводящие к образованию вторичной и третичной структур, в значительной степени влияющид на их химические и физические свойства. Вследствие того, что пептидная связь по некоторым особенностям близка к двойной, что обусловливает ее планарность, пептиды и белки могут существовать как в цис-, так и в траке-конфигурации [106]. Обычно осуществляется транс-форма с а-спиралью, так как ifu -форма стерически более затруд- [c.384]

    Структура и физические свойства. По физич. и ряду химич. свойств А. резко отличаются от соответствующих к-т и оснований. Они лучше растворимы в воде, чем в органич. растворителях хорошо кристаллизуются имеют высокую плотность и исключительно высокие темп-ры плавления (часто разложения). Эти свойства указывают на взаимную ионизацию аминных и кислотных групп, в результате к-рой А., в отличие от амино-фенолов, находятся, как правило, во внутрисолевой (цвиттерионной) форме. Взаимное влияние аминогруппы и кислотной группы в цвиттерионе особенно ярко проявляется в случае а-аминокислот, где обе группы находятся в непосредственной близости, и в случае о- и п-аминобензойных к-т, где их взаимодействие передается через систему сопряженных связей. Электроноакцепторные свойства группы —КНз приводят к резкому усилению кислотности карбоксильных групп. Аминогруппа подвергается воздействию со стороны электроноакцепторной карбонильной группы и электронодонор-ного отрицательно заряженного атома кислорода. В результате взаимного гашения этих влияний основность аминогрупп аминоуксусной кислоты и га-амино-бензойной кислоты мало отличается от основности соответственно этиламина и анилина. Вследствие этого аминогруппа А. ионизирована в несколько меньшей [c.53]

    На основании изучения химических и физических свойств этой аминокислоты для нее была предложена структура р-(2-аминопиримндил-4)аланина [20]. Однако синтез этого соединения до последнего времени осуществить не удавалось, в связи с чем предполагаемая структура латирина оставалась недоказанной, а проблема его синтеза — открытой. [c.337]

    Не все аминокислоты образуют ожидаемые диэлектрические инкременты. Эти относительно редко встречающиеся исключения таковы, что и на основании исследования других физических свойств приходится отклонять возможность существования полярной структуры. Сюда принадлежат о- и п-аминобензойные кислоТы, у которых диэлектрический инкремент приблизительно равен НУЛЮ. Напротив, как и следовало ожидать, триметилбетаин п-аминобензойной кислоты характеризуется величиной dejd , равной + 68. Следовательно, кислота и бетаин, которые обычно практически создают одинаковый диэлектрический инкремент, должны изображаться в данном случае различно написанными формулами  [c.102]

    Ионизация молекул белка качественно напоминает ионизацию аминокислот, но в количественном отношении отличается от нее благодаря наличию большого числа способных к ионизации групп. Белки образуются путем конденсации а-аминогруппы одной аминокислоты с а-карбоксильной группой соседней аминокислоты, поэтому, за исключением двух концевых аминокислот, все а-амино-и карбоксильные группы участвуют в образовании пептидных связей и в белке не ионизуются. Однако в боковых цепях присутствуют сотни амино- и карбоксильных групп, которые могут легко ионизоваться. Электростатическое притяжение, возникающее меяаду некоторыми из этих групп, способствует стабилизации третичной структуры белковой молекулы, при этом молекулы белков часто бывают свернуты таким образом, что большинство способных к ионизации групп оказываются расположенными на поверхности молекулы, где они могут вступать во взаимодействие с окружающей средой. Естественно, что относительное число положительно и отрицательно заряженных групп в молекуле белка определяет те или иные ее физические свойства. У гистонов преобладают катионные группы, в то время как в других белках количество анионных и ка- [c.23]

    Хотя аминокислоты обычно изображают как соединения, содержащие амино- и карбоксильную группу H2N HR 00H, некоторые их свойства, как физические, так и химические, не согласуются с этой структурой. [c.1040]

    Кристаллизация и кристаллические структуры. 9. Электрические и магнитные явления. 10. Спектры и некоторые другие оптические свойства. 11. Радиационная химия и фотохимия, фотографические процессы. 12. Ядерные явления. 13. Технология ядерных превращений. 14. Неорганическая химия и реакции. 15. Электрохимия. 16. Аппаратура, оборудование заводов. 17. Промышленные неорганические продукты. 18. Экстрактивная металлургия. 19. Черные металлы и сплавы. 20. Цветные металлы и сплавы. 21. Керамика. 22. Цемент и бетон. 23. Сточные воды и отбросы. 24. Вода. 25. Минералогическая и геологическая химия. 26. Уголь и продукты переработки угля. 27. Нефть, нефтепродукты и родственные соединения. 28. Детонирующие и взрывчатые вещества. 29. Душистые вещества. 30. Фармацевтические препараты. 31. Общая органическая химия. 32. Физическая органическая химия. 33. Алифатические соединения. 34. Алициклические соединения. 35. Неконденсированные ароматические системы. 36. Конденсированные ароматические системы. 37. Гетероциклические соединения (с одним гетероатомом). 38. Гетероциклические соединения (более чем с одним гетероатомом). 39. Элементоорганические соединения. 40. Терпены. 41. Алкалоиды. 42. Стероиды. 43. Углеводы. 44. Аминокислоты, пептиды, белки. 45. Синтетические высокомолекулярные соединения. 46. Краски, флуоресцентные отбеливающие агенты, фотосенсибилизаторы. 47. Текстиль. 48. Технология пластмасс. 49. Эластомеры, включая натуральный каучук. 50. Промышленные углеводы. 51. Целлюлоза, лигнин и др. 52. Покрытия, чернила и др. 53. Поверхностно-активные вещества и детергенты. 54. Жиры и воска. 55. Кожа и родственные материалы. 56. Общая биохимия. 57. Энзимы. 58. Гормоны. 59. Радиационная биохимия. 60. Биохимические методы. 61. Биохимия растений. 62. Биохимия микробов. 63. Биохимия немлекопитающих животных. 64. Кормление животных. 65. Биохимия млекопитающих животных. 66. Патологическая химия млекопитающих. 67. Иммунохимия. 68. Фармакодинамика. 69. Токсикология, загрязнение воздуха, промышленная гигиена. 70. Пищевые продукты. 71. Регуляторы роста растений. 72. Пестициды. 73. Удобрения, почвы и питание растений. 74. Ферментация. [c.50]

    Применение ионообменной хроматографии позволяет разделять сложные смеси ионов и молекул, имеющих весьма близкие физические и химические свойства. Японским авторам [1 ] удалось разделить на сульфокатионите диастереомерные пары а-аминокислот треонина, оксипролина, изолейцина и фенилсерина. Оптические антиподы можно разделить только на полимерах, обладащих асимметрической структурой, так как только в этом случае можно ожидать появления отличий во взаимодействии антиподов с полимером. [c.49]

    Интерес к аминокислотам и пептидам обусловлен тесной внутренней связью этих веществ с белками и той Байтной ролью, которую они играют как основные компоненты почти всех биологических систем. Этот интерес усилился за последние годы, так как стало яснее, что удовлетворительное понимание химических и физических явлений в биологических системах основано на знании структурной химии белковых молекул. Исследователи многих специальных областей биологии, химии и физики принимают во все возрастающей мере участие в разре-щении вопроса о полной химической и физической картине строения белковой молекулы, в смысле идентификации и установления числа атомов, входящих в состав белка, и деталей их соединения друг с другом. В этом смысле до сих пор структура ни одной белковой молекулы еще не известна. Доказательства из различных источников привели к общепринятой картине молекулы белка, как состоящей из длинных полипептидных цепей, способных принимать более или менее вытянутые конфигурации или свернутых определенным, но до сих пор еще не установленным образом, в зависимости от химической структуры молекул и от действующих на них внешних и внутренних сил. Те же данные привели к ряду теорий и гипотез, рассматривающих силы взаимодействия между молекулами белка, от которых зависят характерные свойства как кристаллических, так и фибриллярных белков [4—6, 14, 17, 25]. Подробное обсуждение этих идей и их значения для будущего развития химии белков выходило за пределы данной статьи, в которой мы ограничимся обсуждением лишь тех результатов, которые дает [c.298]

    Физические и химические свойства нуклеиновых кислот существенно отличаются от свойств белков и полипептидов. Это является следствием совершенно разного химического состава и строения двух указанных классов молекул. В то время как полипептидный остов электрически нейтрален и к нему присоединены боковые цепи приблизительно двадцати типов, остов нуклеиновой кислоты представляет собой сильно заряженный полиэлектролит, который несет боковые группы только четырех (в большинстве случаев) типов. Далее, боковые цепи нуклеиновых кислот проявляют специфическую комплементар-ность (спаривание оснований), которая отсутствует у аминокислот. Эта комплементар-ность частично ответственна за образование спиральных палочкообразных структур как в двух-, так и в одноцепочечных молекулах. Кроме того, заряженный остов затрудняет переход нуклеиновых кислот в компактные глобулярные конформации, столь типичные для белков. [c.287]


Смотреть страницы где упоминается термин Структура и физические свойства аминокислот: [c.239]    [c.457]    [c.457]    [c.21]    [c.23]    [c.41]    [c.315]    [c.124]    [c.184]    [c.40]   
Смотреть главы в:

Основы органической химии. Ч.2 -> Структура и физические свойства аминокислот

Основы органической химии. Ч.2 -> Структура и физические свойства аминокислот




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты физические свойства



© 2025 chem21.info Реклама на сайте