Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения водорода с металлической связью

    Порошкообразные V, Nb и Та адсорбируют значительные количества водорода, кислорода и азота, образуя твердые растворы внедрения. Неметаллы при этом переходят в атомарное состояние, и их электроны участвуют в образовании металлических связей в кристаллической решетке. При нагревании растворимость неметаллов возрастает, а характер связей между атомами металл — неметалл меняется. Изменяются и свойства соединений. Так, постепенное накопление кислорода в ниобии приводит к образованию нижеследующего ряда соединений  [c.287]


    Наконец, возможен такой случай, когда оба соединяющихся атома отличаются друг от друга по химическому характеру, но не столь резко противоположны, как фтор и натрий. Примером может служить соединение фтора с водородом, металлические свойства которого выражены несравненно слабее, чем у натрия. Ввиду этого осуществляющая валентную связь электронная пара далеко не так сильно оттянется к фтору (т. е. более металлоидному элементу), как при взаимодействии последнего с натрием. Данный случай будет, следовательно, промежуточным между двумя рассмотренными выше, как это видно из рис. П1-35. [c.89]

    Образует соединения с металлической связью. Порощок титана, как и цирконий и гафний, поглощает водород, кислород, азот. При этом растворённые неметаллы переходят в атомарное состояние и принимают участие в образовании химической связи. Наряду с сильно нелокализованной (металлической) возникает локализованная (ковалентная связь) связь. Поэтому металлы приобретают повьппенную твёрдость и хрупкость. Способность титана (как и циркония и гафния) поглощать газы используется для получения высокого вакуума, удаления газов из сплавов и т.д. [c.118]

    Соединения водорода с металлической связью [c.294]

    Все свойства (физические, химические, спектральные и т. п.) молекулярного водорода отличны от атомарного. А, по Менделееву, в результате химического взаимодействия образуется тело, отличное от взаимодействующих веществ. Еще большее различие в свойствах, например, металлической меди (атомы связаны металлической связью) от свойств составляющих атомов меди. Вообще кажется странным, почему классическая химия считает, что в результате процесса Н+Р Н—Р образуется химическое соединение, а в процессе Н- -Н- Н—Н или Р+Р Р—Р оно не возникает Это по меньшей мере не логично. Естественно признание как гетероатом-ных (например, НР), так и гомоатомных химических соединений (Н2, р2, металлы и т. п.). [c.30]

    С большинством металлов водород образует гидриды с металлической связью, обеспечиваемой подвижными электронами, что определяет высокую тепло- и электропроводность этих соединений. [c.38]

    На рис. 13 сравнивается каталитическая активность металлов в реакции разложения муравьиной кислоты. Увеличение каталитической активности с уменьшением теплоты адсорбции этилена или водорода наблюдается и в реакции гидрирования этилена (рис. 14). Однако не следует переоценивать значение приведенных соотношений. Очень часто прочность адсорбции важного для катализа промежуточного соединения слабо зависит или совсем не зависит от непосредственно измеренных теплот адсорбции вследствие того, что в каталитическом превращении участвуют лишь некоторые из адсорбированных частиц. Общий подход не учитывает также часто наблюдаемую при хемосорбции стереоспецифичность, играющую определенную роль и в каталитическом превращении. Как уже указывалось в первых разделах главы, очень часто строятся эмпирические корреляции между каталитической активностью и каким-либо свойством металла. Примерами этого изобилует литература по катализу в качестве иллюстрации можно назвать корреляцию активности в реакции обмена Нг—Ог с прочностью связи металл—металл [38] или между активностью в реакции гидрогено-лиза этана и процентом -характера металлической связи [39]. Подобные корреляции опасны тем, что можно поддаться искушению и решить, что найден основной фактор, управляющий каталитической активностью, тогда как глубокое понимание существа дела возможно, только если детально изучен механизм реакции на молекулярном уровне, а такие реакции весьма редки. [c.31]


    Соединение водорода с металлами может отличаться различной силой связи, так как по своему характеру сами связи могут быть различными (ионными, ковалентными и металлическими), в зависимости от природы металла и наличия примесей в нем. При распаде гидридов часть водорода диффундирует в металл, изменяя его [c.82]

    Подобно металлическому цинку, кадмий катализирует некоторые процессы мягкого гидрирования. Помимо кадмия, нанесенного на различные носители, применяется его борид, обладающий большей термической устойчивостью. Наиболее характерны для кадмия и его борида реакции присоединения водорода по С= О-связи с образованием спиртов [664—670], причем в ненасыщенных карбонильных соединениях С=С-связь не гидрируется. Все эти процессы протекают в более жестких условиях, чем на скелетном цинке. Сложные медно-кадмиевые контакты применяются при селективном гидрировании С=С-связи до С=С [661—663]. [c.1346]

    Многие соединения водорода с металлоидами при комнатной температуре являются газами. Соединения водорода с металлами в обычных условиях находятся в кристаллическом состоянии. В соединениях с элементами с наиболее ярко выраженными металлическими свойствами водород присутствует главным образом в виде гидрид-иона Н" в соединениях с некоторыми другими металлами — как атомный водород Н в соединениях с большинством неметаллов водород связан ковалентными связями вида И—О—Н. В реакциях с рядом металлоидов (элементами, имеющими тенденцию к присоединению электронов), например Ог, СЬ, S, N2, водород образует не ионную связь, характеризующуюся полным переходом электронов от одного атома к другому, а полярную, при которой электронная пара соединяющихся атомов односторонне оттянута к одному из них. [c.51]

    Все же, несмотря на сильную связь в молекулах Нг, водород вступает в экзотермические реакции с большинством других элементов, но прп комнатной температуре эти реакции редко протекают с большой скоростью. Многие из образующихся при этом соединений (особенно соединения водорода с неметаллическими элементами, расположенными в правом верхнем углу периодической таблицы) при комнатной температуре являются газами, однако большинство соединений водорода с металлами в обычных условиях находятся в кристаллическом состоянии. Соединения первого типа характеризуются относительно слабыми межмолекулярными силами по сравнению с соединениями второго типа. Формулы большинства наиболее распространенных бинарных соединений водорода приведены в табл. 12.1. По-видимому, в соединениях с наиболее ярко выраженными металлическими элементами водород присутствует главным образом в виде гидрид-иона Н в соединениях с некоторыми металлами — как атомарный водород Н, и, наконец, в соединениях с большинством неметаллов водород связан ковалентными связями, как, например, Н—О—Н. [c.345]

    Ранее была изучена активность бинарных металлических адсорбционных катализаторов на основе палладия и варьируемых компонентов иридия и осмия при гидрировании циклогексена и аллилового спирта [1, 2]. Известно, что механизм жидкофазного гидрирования определяется в первую очередь степенью адсорбции водорода и непредельного соединения и энергией связи их с поверхностью катализатора. Пред- [c.27]

    Для него, как неметаллического элемента, характерны ионные соединения, в которых он выступает в качестве простого аниона Н. При положительной степени окисления водород образует только ковалентные соединения и является комплексообразователем в анионных комплексах. Образует также соединения с металлическим типом химической связи. [c.261]

    Соединения водорода с металлической связью. С й-эле-ментами водород образует разнообразные твердые растворы типа внедрения. Так, при обычных условиях в одном объеме палладия растворяется до 700 объемов Нг (до 38 ат. %). Поглощение сопровождается увеличением объема кристаллической решетки палладия на 3,5%. Это соответствует возрастанию внутреннего давления в кристалле на 275 ООО атм. Как показывают расчеты, при столь высоком давлении водород должен находиться в металлическом состоянии, т. е. отдавать свой электрон на построение энергетической зоны металлического кристалла. [c.267]

    Кристаллизация металлов определяется принципом наиболее плотной упаковки более вероятна та структура, которая отвечает наименьшему значению С в данных условиях. Как правило, такая структура имеет наиболее плотную упаковку ионов, атомов или молекул в кристалле. В металлических решетках связи не имеют определенной направленности, вследствие чего принцип наиболее плотной упаковки господствующий. Именно поэтому металлы имеют наиболее плотно построенные решетки гранецентрированного куба, объемноцентри-рованного куба (К-12 и К-8) и плотную гексагональную (Г-12). Известны многие соединения металлов (интерметаллические соединения) с металлической связью (СияАи, Mg (i, А1Со, Си1 А12 и др.), многие твердые растворы углерода, азота, водорода в переходных металлах, а также и соединения этих элементов с переходными металлами, которые имеют металлическую проводимость. В соединениях металлов [c.126]


    Металлические производные углеводородов ряда ацетилена. Ацетй лен и его моноалкильные производные, т. е. алкины, отвечающие формуле R = H, обладают той особецностью, что они очень легко образуют металлоргапические соединения. В этих соединениях водород у углеродного атома, находящегося при тройной связи, замещен металлом R i = Me . У основного члена ряда — ацетилена — имеется два атома водорода, способных к такому замещению  [c.77]

    Химическому соединению присуще только ему свойственное химическое или кристаллохимическое строение, В химическом или кристаллохимическом строении главное — это химическая связь, ее природа. Именно химические соединения характеризуются наличием химической связи. С этой точки зрения молекулы и кристаллы, построенные из одинаковых атомов, являются химическими соединениями, Атомы в молекуле водорода связаны ковалентной связью. Все свойства (физические, химические, спектральные и т,п,) молекулярного водорода отличны от атомарного , А по Менделееву, в результате химического взаимодействия образуется тело, отличное от взаимодействующих веществ. Еще большее различие в свойствах, например, металлической меди (атомы связаны металлической связью) от свойств составляющих атомов меди, Вообпд,е кажется странным, почему классическая химия считает, что в результате процесса Н + Г —> Н Р образуется химическое соединение, а в процессе И + Н —+ Н Н или Г + Р —> —> р—Р оно не возникает. Это по меньшей мере не логично. Естественно признание как гетероатомных (например, НР), так и гомоатомных химических соединений (Н2, р2, металлы и т,п,). [c.22]

    ГИДРИДЫ, соединения водорода с металлами или менее электроотрицат., чем водород, неметаллами (иногда к Г. относят соед. всех хим. элементов с водородом). Г. щелочных и щел.-зем. металлов — солеобразные соед., молекулы к-рых содержат атомы водорода в степени окисл. —1 при нагрев, выделяют Нг не раств. в орг. р-рителях, энергично разлаг. водой с образованием щелочей и Нг в отсутствии влаги стойки. Г. переходных металлов имеют характер связи, близкий к металлической, миогие относятся к нестехиомет-рич. соед., твердые хрупкие в-ва серого или черного цвета. Гидриды Ве, Mg, А1 и подгрупп Си, 7п, Са — полимерные соед., термически малоустойчивы. Г. металлов — восстановители, источники Нг. Получ. взаимод. металлов с Нз полимерные Г.— р-цией галогенидов металлов с Г. или алюмогидридами щел. металлов. [c.131]

    Аммиачйьш раствор азотнокислого серебра вызывает медленно на хододу и быстро при нагревании разложение алкенилборных соединений с образованием соответствующего олефина и осаждением металлического серебра. При действии перекиси водорода разрывается связь атома бора с углеродом и образуется альдегид или кетон  [c.17]

    Отчетливой границы между указанными группами нет, имеются элементы с промежуточным типом связи. Между ионными и металлическими находится группа лантаноидов, которая образует водородные соединения с металлическим типом связи до состава МеНа и с ионным — в области состава МеНа-з. В какой-то степени эти свойства предполагаются у гидридов иттрия и актиноидов. Гидрид магння является промежуточным между соединениями с ионными н ковалентными связями. Гидриды подгрупп бора н цинка представляют собой полимерные соединения с ковалентным типом связи, а соединения подгруппы меди с водородом — типичные переходные соединения от металлических к ковалентным. В молекулах соединений неметаллов VII группы с водородом уже есть определенная доля ионной связи [4]. А. Ф. Жигач и Д. С. Стаспневич [4] водородные соединения элементов 1—111В подгрупп выделяют в отдельную группу, основным признаком которой авторы считают существование водородных мостиковых связей. Последние служат причиной образования димеров молекул этих соедииеиий. Одиако, по мнению авторов, эта группа является переходной между ковалентными и металлическими водородными соединениями. [c.5]

    Проведено изучение адсорбции водорода методом термодесорбции и сравнительная гидрогенизация соединений различной адсорбционной способности на никель-хромовых, палладиевых, платино-палладиевых, палладий-родиевых катализаторах на носителях. Показано, что формы адсорбированного водорода, энергия связи Н—К предопределяют активность, избирательность и стабильность металлических контактов при гидрогенизации различных типов органических соединений. Степень участия в катализе различных форм адсорбирсь ванного водорода и степень их воспроизводства опреде.чяются адсорбционной способностью органического соединения, природой растворителя и величиной удельной поверхности, на которой адсорбируется активная форма водорода. [c.457]

    I—Ve подгрупп) или ионная (гидриды металлов I—Пе подгрупп) связь. С увеличением содержания водорода в гидридах повышается доля ковалентной связи. Примерно такая же закономерность изменения типа хим. связи наблюдается у карбидов и нитридов. Фазы внедрения обладают высокими т-рой плавления, твердостью и электропроводностью их называют металлоподобными тугоплавкими соединениями. К тугоплавким М. относятся также силициды и германиды, не являющиеся фазами внедрения и кристаллизующиеся в сложные кристаллические структуры. Наряду с ковалентной связью между атомами кремния в силицидах существуют и металлические связи, о чем свидетельствуют явно выраженные металлические св-ва большинства [c.795]

    В качестве промышленного сырья было бы весьма заманчиво использовать некоторые широко распространенные вещества, включая азот, моноксид и диоксид углерода и метан. Однако это относительно инертные соединения, и чтобы они могли участвовать в реакции, необходимы катализаторы. В этой ситуации представляется перспективным применение растворимых металлоорганических соединений. Например, при помощи растворимых соединений молекулярного азота (N2) с оловом и молибденом удается осуществить синтез аммиака в мягких условиях. Связи углерод — водород в соединениях типа метана и этана,нереакционноспособных в обычных условиях, разрываются родий-, рений- и иридийорга-ническими комплексами. Надежда на осуществление синтеза сложных молекул из моноуглеродных (моноксида и диоксида углерода) подкрепляется недавними экспериментами, в которых наблюдалось образование углерод-углеродных связей на металлических центрах в составе растворимых металлоорганических соединений. Большое значение имеет синтез соединений с кратными связями между углеродом и металлом. Такие соединения катализируют взаимное превращение (метатезис) различных этиленов, проводимое с целью получения исходных материалов для производства полимеров. [c.51]

    Свойства простых веществ и соединений. Все металлы VIН группы имеют небольшой объем атомов, плотную упаковку кристаллической решетки п, как следствие этого, прочность металлической связи и высокие температуры плавления. Важной особенностью железа, кобальта и никеля является способность этих металлов к намагничиванию. Переменная степень окисления членов подгруппы VIIIB обусловливает отчасти и их разнообразнейшие каталитические свойства. Способность образовывать кислородные соединения в каждом ряду VIII группы быстро уменьшается с возрастанием порядкового номера. Железо окисляется легко, никель —с тру дом (а палладий и платина в этом отношении сходны с серебром и золотом). Гидроксиды элементов амфотерны с преобладанием основных свойств. Существуют соединения железа, например ферраты (К.2ре04), где атом Ре входит в состав аниона. Подобно хромитам и перманганатам, эти соединения — сильные окислители. Металлы легко образуют сплавы и интерметаллические соединения. Характерная черта, особенно порошкообразных металлов — способность поглощать огромное количество водорода. Поглощенный водород частично, видимо, диссоциирует на атомы и проявляет повышенную химическую активность. Это используется при проведении химических процессов. с участием. водорода. [c.373]

    Атомы "углерода могут быть непосредственно связаны не только с водородом, но и с другими элементами, преимущественно с металлоидами. Последние могут быть связаны с углеродом не непосредственно, а через атомы других металлоидов. Устойчивые непосредственные связи между атомами металла и атомами углерода сравнительно редки. Такими соединениями являются металлические соли ацетилена и его гомологов—ацетилениды и карбиды металлов—и соединения ртути, непосредственно связанной с атомами углерода в многочисленных алифатических и ароматических соединениях. В аналитической практике чаще всего приходится иметь дело со следующими типами соединений, называемых металлорганическими . К ним относятся обычные и внутрикомплексные металлические соли органических кислот и соединений кислотного характера хелатныесоединения органических кислот, в которых ион металла входит в анион соли органических азотсодержащих оснований с неорганическими кислотами продукты присоединения солей неорганических и органических кислот с органическими соединениями адсорбционные соединения кислотных и основных гидроокисей металлов с основными и кислотными органическими соединениями многие красители и пигменты. [c.102]

    Другим путем попадания водорода в металл может быть образование химических соединений между металлом и водородом— гидридов, распадающихся со временем с выделением водорода [17, 18, 21]. Следует отметить, что связь водорода с металлами может быть ионной, ковалентной и металлической [22]. Случаи ионного типа связи (или полярного), когда водород является отрицательным ионом, встречаются в соединениях водорода с щелочными и щелочноземельными металлами и отличаются высокой стабильностью. Ковалентная связь известна, например, у гидридов АзНз и 5ЬНз, отличающихся летучестью. Металлическая связь характерна для соединений водорода с металлами переходной группы и напоминает интерметаллические соединения. Таким образом, сила связи в соединениях водорода с металлом может быть разной в зависимости от природы металла, а также наличия примесей в нем. В некоторых работах было установлено, что действительно при выделении водорода на некоторых металлах наблюдается гидридообразование [23, 24]. Одна часть образовавшегося при разложении гидридов атомарного водорода уходит из металла, а другая часть диффундирует в металле. [c.269]

    Наиболее веским доказательством в пользу классического ассоциативного механизма служит то, что реакции обмена ненасыщенных углеводородов протекают значительно быстрее, чем реакции насыщенных углеводородов [3, 16]. Этот факт трудно объяснить с позиций диссоциативной теории, которая из-за неучастия в диссоциативном процессе я-электронов предсказывает близость реакционной способности насыщенных и ненасыщенных углеводородов при условии, что вытеснением реагентов с поверхности и тормозящим действием побочных реакций можно пренебречь. С точки зрения диссоциативной теории хемосорбция углеводородов и молекул водорода имеет много общего и тот и другой процесс включают отрыв атома водорода металлическим радикалом (СвНв— Н - Р1). В диссоциативной теории обычно считают, что диссоциация является стадией, контролирующей скорость процесса. Однако это не согласуется с большей реакционноспособностью в реакциях обмена ароматических соединений, углерод-водородная связь в которых прочнее, чем в алифатических углеводородах. [c.102]


Смотреть страницы где упоминается термин Соединения водорода с металлической связью: [c.156]    [c.306]    [c.618]    [c.60]    [c.265]    [c.374]    [c.374]    [c.374]    [c.374]    [c.374]    [c.265]    [c.362]    [c.352]    [c.616]    [c.44]   
Смотреть главы в:

Неорганическая химия 1975 -> Соединения водорода с металлической связью




ПОИСК





Смотрите так же термины и статьи:

Водород соединения

Металлическая связь

Соединения металлические



© 2025 chem21.info Реклама на сайте