Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Два представления о природе связи

    Механизм образования адгезионных связей в металлополимерных системах неразрывно связан с природой связей в зоне контакта и их числом. В соответствии с современными представлениями природа связей в зоне формирования адгезионного контакта (на границе раздела фаз) определяется химическим строением адгезива и субстрата, обусловливающих соответствующий характер взаимодействия химическое, межмолекулярное, электростатическое и т. д. Однако независимо от природы связей число их задается фактической площадью контакта соприкасающихся поверхностей. [c.196]


    Создание систематики химических элементов тесно связано с развитием представлений о строении атомов, о силах взаимодействия и природе связи их друг с другом, а также с данными о явлениях, характеризующих эти взаимодействия и связи. Современная систематика химических элементов создавалась в течение второй половины XIX и первой половины XX вв. на основе достижений химии и физики. К настоящему времени систематика химических элементов приобрела стройность и составила одну из основ современного естествознания благодаря трудам Дмитрия Ивановича Менделеева, открывшего периодический закон, Нильса Бора, связавшего теорию строения атомов с периодической систематикой, и Генри Л оз-ли (1887—1915), давшего экспериментальную основу для бесспорного порядкового расположения химических элементов. [c.34]

    Современные представления о природе валентной связи основаны на положениях классической термодинамики и квантовой механики. Согласно этим представлениям валентная связь между атомами образуется из-за стремления их к энергетически более устойчивому состоянию, которому соответствует наименьший запас свободной энергии. Химическая связь возникает при взаимодействии электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекул. Характер этого взаимодействия оказалось возможным установить на основе представлений о строении атома и о корпускулярно-волновых свойствах электрона. [c.104]

    Не следует думать, что комплексные соединения всегда построены из ионов в действительности эффективные заряды атомов и молекул, входящих в состав комплекса, обычно невелики. Более правильно поэтому пользоваться термином центральный атом . Ионные представления о природе связи в комплексных соединениях носят в некоторой степени формальный характер, однако они удобны для классификации и определения зарядов комплексов и позволяют качественно предсказать некоторые их свойства. [c.355]

    Два представления о природе связи [c.463]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Современная систематика химических элементов создавалась в течение второй половины XIX и первой половины XX вв. на основе достижений химии и физики в исследовании закономерностей изменения природы элементов. Создание систематики химических элементов тесно связано с развитием представлений о строении атомов, силах взаимодействия и природе связи их друг с другом, а также с данными о явлениях, характеризующих эти взаимодействия и связи. [c.21]

    По современным представлениям химическая связь между атомами имеет электростатическую природу. Под химической связью понимают электрические силы притяжения, удерживающие частицы друг около друга. Частицы, которые принимают участие в образовании химических связей, могут быть атомами, молекулами или ионами. Каждая химическая связь представляется в структурных формулах валентной чертой, например  [c.41]

    Природу связи в таких комплексах объяснить гораздо труднее, чем в предыдущем случае, и сколько-нибудь удовлетворительного представления до сих пор не выработано [42]. Трудность состоит в том, что в таких комплексах донор (а им может быть и п- и я-донор) может отдавать свою электронную пару, но акцептор не имеет вакантной орбитали. В некоторых случаях связь между донором и акцептором в комплексе можно объяснить простым притяжением типа диполь — индуцированный диполь [43], но такое взаимодействие слишком слабое и во многих случаях не может быть ответственным за связь в комплексе [44] например, нитрометан образует намного менее прочные комплексы, чем нитробензол, хотя дипольные моменты этих молекул почти одинаковы. Очевидно, что во многих донорно-акцепторных комплексах имеется связь несколько другого типа, называемая связью с переносом заряда природа ее точно не известна, но, по-видимому, определенную роль здесь играет до-норно-акцепторное взаимодействие. [c.119]

    При выборе наиболее подходящей жидкой неподвижной фазы часто используют качественные представления о природе связи между молекулами веществ, подлежащих анализу, и молекулами растворителя. С этой точки зрения целесообразно жидкие фазы разделить на две группы полярные и неполярные. Обычно для разделения полярных веществ используют полярные неподвижные фазы и относительно неполярные подвижные фазы. Неполярные вещества можно эффективнее разделять при использовании неполярных неподвижных фаз и полярных подвижных. [c.65]

    При выборе наиболее подходящей жидкой фазы используют качественные представления о природе связи между молекулами анализируемых веществ и молекулами растворителя, разделяя применяемые жидкие фазы на полярные и неполярные. [c.108]

    Сущность же этой реакции с точки зрения электронных представлений о природе связей заключается в следующем  [c.27]

    Более подробное рассмотрение современных представлений о природе связей в органических соединениях выходит за пределы данного курса. [c.34]

    С точки зрения современных электронных представлений природу ароматических связей объясняют следующим образом. [c.328]

    Природу связи в металлических решетках нельзя понять в рамках известных Вам представлений о химическом взаимодействии. Ионная связь в чистых металлах невозможна, так как кристалл образован атомами одного и того же. ...  [c.236]

    Механизм образования комплексных соединений, прежде всего взаимодействие между комплексообразователем и лигандами, природа связи между ними, в современной химии описывается с помощью различных квантовомеханических методов — метода валентных связей, электростатических представлений (теории кристаллического поля), метода молекулярных орбиталей и теории поля лигандов. [c.167]

    Строение олигомерных звеньев литийорганических соединений обычно обсуждается с позиций представлений о природе связи [c.7]

    Пептидная связь. Главной структурной единицей белков и пептидов является пептидная (амидная) связь —СО—N14—. Согласно современным представлениям, пептидная связь в белках является практически плоской, ее основные параметры приведены на рисунке 33. В обычных условиях наблюдаются лишь небольшие отклонения от плоской системы (до 5 — 10 ) большие деформации возможны в напряженных циклических системах. Пептидная связь примерно на 10% короче обычной, простой С—N и имеет характер частично двойной связи — =N . При изучении этой проблемы Л. Полинг и Р. Кори, анализировавшие методом рентгеноструктурного анализа ряд модельных ди- и трипептидов, предложили в 1948 — 1955 гг. объяснять особую природу связи С—N резонансом между двумя формами пептидной связи а и б. [c.85]


    Р. Робинсона и К. Ингольда были развиты электронные представления, объяснившие природу связей в органических соединениях. Создание квантовой механики, а затем и квантовой химии послужило началом развития теории молекулярных орбиталей, открывшей новую страницу в понимании природы химического связывания. [c.32]

    Современные представления о формировании металлцеолитных катализаторов, восстановлении катионов, взаимодействии центров различной природы, связи каталитической активности с размером частиц во многих отношениях недостаточно адекватны. Необходимо разработать более совершенные способы определения дисперсности различных металлов, надежные методы анализа сплавов на цеолитах, изучить влияние различных реакционных систем на размеры кристаллов металлов и характер их активных центров и др. [c.177]

    Однако такой вывод не соответствует существующим представлениям о координационном числе атома кремния. Бокий и Стручков [17], основываясь на рассмотрении квантовомеханической природы связи и на экспериментальных результатах, считают, что координационное число 6 (так же как и 5) для таких элементов 4-й группы, как германий и особенно кремний, не характерно. Различие между оловом, для которого характерно повышение [c.192]

    С=0 поделены весьма неравномерно, и альдегиды являются сильно полярными молекулами. Для качественного описания природы связи в карбонильной группе обычно используют представление о двойной связи, содержащей сг- и я-компоненты с двумя парами несвязанных (п) электронов у атома кислорода принимают, что тригональный атом углерода находится в состоянии 5р2-гибридизации и образует а-связи с водородом и другим [c.489]

    Система, описанная в работе [6], является дальнейшим развитием предыдущей в том плане, что учитывается пространственное строение молекул. Как и ранее, синтез ведется от конца к началу (от продуктов реакции к исходным веществам) по заранее определенному набору химических реакций. Аналогичный подход использован в системе [10]. Более обоснованными и перспективными являются методы, основанные на математическом описании структуры молекул и химических реакций и классифицируемые как логические методы [8, И]. В работе [8] для представления молекулы в качестве параметров используются тип атома и топо-тогическая структура связей между атомами в молекуле. При том акцент сделан на типы атомов углерода в молекуле в соответствии с природой связи углерода с другими элементами. В работе И] для характеристики молекулы используются три параметра естоположение атома в молекуле, ковалентные связи между томами и свободные электроны в каждом атоме молекулы. Послед- [c.443]

    Наконец, третьей, также первоочередной задачей, которая в середине 30-х годов встала перед исследованием, являлось выяснение химической и кинетической природы отличий, установленных к этому времени для верхне- и нижнетемпературных процессов окисления углеводородов. Помимо интереса познавательного характера, немаловажной причиной остроты, которую приобрел этот вопрос, явилось уже давно имевшееся в литературе представление о связи детонации в двигателе внутреннего сгорания с процессами медленного окисления, протекающими впереди фронта пламени в еще не сгоревшей части топливо-воздушно смеси. Эта идея, после открытия явления двухстадийного низкотемпературного воснламенения была рядом авторов расширена дополнительным и впоследствии экспериментально подтвержденным предположением о том, что в случае детонационного режима предпламенное окисление топлива в двигателе протекает по механизму нижнетемпературного окисления. Это несомненно придало актуальность задаче изучения сходства и различия в химизме процессов, составляющих содержание верхне- и нижнетемпературного окисления углеводородов. [c.93]

    В 1916 г. В. Коссель выдвинул предположение, что при образовании химической связи происходит передача электронов от одного атома к другому в результате образуются заряженные частицы, которые притягиваются друг к другу. Это представление правильно отразило природу ионной (гетерополярной, электровалентной) связи, характерной для большинства неорганических соединений. Однако было ясно, что в таких молекулах, как водород Нз, хлор С1г, метан СН4, и в более сложных органических соединениях природа связи должна быть иной. Основы для понимания этого типа связи были заложены в работах Г. Льюиса и И. Ленгмюра (1913— 1920 гг.), указавших на особую роль октета электронов как устойчивой электронной оболочки и на возможность создания октета не только путем передачи, но и путем обобщения электро1Юв. От этих работ ведет свое начало представление о существовании особого типа связи (ковалентной, гомеополярной), осуществляемой парой электронов. Так валентная черточка классической теории строения получила физическое истолкование. И все же перед учеными продолжали стоять вопросы почему именно электронная пара необходима для создания ковалентной связи, почему устойчив именно октет электронов, в каком состоянии находятся связующие электроны Поиски ответа на эти вопросы с помощью зародившейся в середине 20-х годов квантовой механики явились одним из направлений дальнейшего развития теории химической связи. Для судьбы электронных представлений в органической химии важнейшее значение имело и развитие в другом направлении объяснение с новых позиций богатого экспериментального материала органической химии предсказание новых, еще неизвестных экспериментальных фактов. [c.38]

    Химическая связь осуш,ествляется валентными электронами , у 5- и р-элементов внешними электронами, у -элементов внешними П8- (п—номер внешнего уровня) и иредвнешними (п— 1) /-электронами, у/-элементов п8-, (п— I) й- и (я — 2) /-электронами. По современным представлениям химическая связь имеет электрическую природу. Но осуществляется она по-разному. Поэтому [c.40]

    Химическая связь осуществляется валентными электронами у з- и р-элементов внешними электронами, у -элементов внешними пз- и предБнешними (п—1) -электронами, у /-элементов пз-, п—1 ё- и (п—2)/-электронами. По современным представлениям химическая связь имеет электрическую природу. Но осуществляется она по-разному. Поэтому различают три основных типа химических связей ковалентную, ионную и металлическую. [c.74]

    По представлениям волновой механики ( 4 доп. 5) валентная связь осуществляется электронным облаком, характер распределения плотности которого между атомами и определяет природу связи. Общая плотность валентного электронного облака не обязательно должна точно соответствовать двум, четырем пли шести электронам, т.е. действительный порядок (р) ковалентной связи может более или менее отклоняться от ее целочисловой кратности (1, 2 или 3). [c.79]

    В заключение остановимся на вопросе о границах применимости теории кристаллического поля. Как отмечалось в начале этой главы, в основе теории заложено представление о строго ионном взаимодействии центрального иона и лигандов, причем электронную структуру лигандов не принимают во внимание—лиганды рассматривают как точечные заряды. Отсюда принципиальная невозиожность учитывать природу связи центральный ион — лиганды , а также особенности распределения электронных облаков в координационных соединениях невозможность строгого количественного расчета энергетических и других характеристик, особенно в тех случаях, когда необходимо учитывать образование л-связи ион — лиганд. [c.284]

    В 1928 г. на клетках Diplo o us pneumoniae были выполнены важные эксперименты, результаты которых показали, что генетическая информация, контролирующая свойства капсульных полисахаридов (гл. 5, разд. Г), может передаваться от одного штамма бактерий к другому. Согласно этим экспериментам, какое-то вещество, присутствующее в убитых клетках и бесклеточных экстрактах, стабильно изменяет свойства капсул, подвергнутых воздействию этого вещества. Данное явление, получившее название трансформация бактерий, много лет оставалось загадкой. В то время когда были выполнены эти эксперименты, не было даже и намека на генетическую роль нуклеиновых кислот, которые воспринимались всеми как довольно странный материал. Более того, к тому времени еще не была доказана ковалентная природа связей в нуклеиновых кислотах. Широко было принято представление о тетрануклеотиде как о повторяющейся единице какого-то регулярного полимера. Обычно считалось, что гены имеют белковую природу. [c.183]

    Такая сложная картина вида частиц и природы связи не позволяет предложить однозначную модель структуры Р. В частности, для описания, напр., шлаковых Р. находят применение различные, часто взаимно исключающие модели, многие из к-рых отвечают представлениям о р-рах. Используются как ионные, так и мол. представления, теория регулярных р-ров и теория совершенных ионных р-ров, модель ассоциир. р-ров, полимерная модель и др. Ни одна из моделей не учитывает всех видов компонентов Р. и их возможных взаимодействий. Но модели позволяют интерпретировать те или иные св-ва расплавов, в нек-рых случаях позволяют их рассчитать. [c.177]

    Некоторые успехи, вероятно, могут быть достигнуты при резком ограничении круга рассматриваемых соединений. Так, если не будет нарушения геометрии молекулы или замены ее отдельных атомов в рассматриваемой группе соединений, то ноложр.ние полосы Va может быть использовано для нахождения варьируемого параметра (изменения природы связей или геометрии комплекса соответственно). Одной из таких попыток в этом направлении является анализ спектров различных алюмосиликатов, содержащих в структуре своих решеток АЮН-группы [8]. Было обнаружено, что если гидроксильная группа участвует в четверной координации атома алюминия, т. е, образован тетраэдр АЮз(ОН), то частота деформационного колебания АЮН-группы обычно близка к 1450 см -. В том случае когда атом алюминия имеет шестерную координацию, то деформационное колебание ОН-группы, входящей в окружение октаэдра АЮ (ОН), имеет частоту около 890 Уменьшение частоты колебания в 1,5 раза при таком же изменении координационного числа качественно согласуется с современными представлениями о свойствах силовых постоянных [И, 89, 396]. [c.66]

    При выборе наиболее подходящей жидкой фазы часто нсполь- зуют качественные представления о природе связи между молекулами веществ, подлежащих анализу, и молекулами растворителя. С этой точки зрения целесообразно обычно применяемые жидкие фазы разделять на две группы полярные и неполярные. [c.215]

    При взаимодействии атомов между ними может возникать химическая связь. Химическая связь осуществляется валентными электронами. Например, у 5- и р-элементов внешними электронами. По современным представлениям химическая связь имеет электрическую природу и возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атрмов. Она осуществляется по-разному. Различают основные тИпы химической связи ковалентную, ионную, донорно-акцепторную, водородную и металлическую. [c.23]

    Выяснение механизма аномалий потребовало не только времени, но и углубления представлений о природе гидрофильности торфа на основе новых экспериментальных данных. В частности, исследования зависимости диэлектрических свойств торфа от влажности не показали наличия сингулярных точек на такого рода зависимостях, рис. 1. Следует также отметить, что приложение диэлектрических методов к исследованию торфа низкой влажности позволило не только глубже познать природу связи и оценить подвижность молекул сорбированной воды, но и создать теоретические предпосылки для разработки злагометрических устройств торфяной сушенки и брикетов, внедряемых в настоящее время на торфобрикетных заводах Белорусской ССР [7]. [c.51]

    Строение аром, углеводородов, и в частности бензола, открытого М. Фарадеем в 1825, не могло быть объяснено существующими теориями. В 1866 Кекуле приписывает бензолу (лроение 6-членного цикла с перемежающимися простыми и двойными связями он же вводит положение об осцилляции связей ( бензоидная теория , 1872). Природа связей в бензоле, др. аром, и непредельных соединениях, как и взаимкпе влияние атомов (В. В. Марковников), была понята на основания квантовочс . представлений. [c.413]

    Координационная теория Вернера с ее концепцией побочной валентности дает единое объяснение существования таких комплексов, как [Со(ЫНз)в]С1з. На основании этой теории, являющейся и в настоящее время фундаментом химии координационных соединений, можно объяснять свойства и стереохимию подобных соединений. Так как теория Вернера была предложена почти за двадцать лет до появления ныне существующих представлений об электронном строении атома, то эта теория не могла описать в современном аспекте природу побочной валентности или, как теперь ее называют, координационной связи. Для описания природы связи в комплексах в настоящее время получили широкое распространение три теории 1) метод валентных связей (МВС), 2) теория электростатического кристаллического поля (ТКП) и 3) теория молекулярных орбит (ТМО). Вначале следует упомянуть о вкладе, внесенном Льюисом иСиджвиком, в теорию химической связи. [c.31]

    Обычно ири подборе неподвижной фазы используются качест1 ен-ные представления, основанные на рассмотрении природы связи между молекулами растворенного вещества и растворителя. [c.96]


Смотреть страницы где упоминается термин Два представления о природе связи: [c.45]    [c.244]    [c.413]    [c.413]    [c.43]   
Смотреть главы в:

Физическая химия -> Два представления о природе связи




ПОИСК





Смотрите так же термины и статьи:

Связь природа

природа связе



© 2025 chem21.info Реклама на сайте