Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства полимеров в силовых полях

    Следует отметить, что одна полимерная цепь может проходить через несколько таких флуктуационных пачек. В результате структура полимера в аморфном состоянии может быть представлена изотропной флуктуационной сеткой, узлами которой являются домены, пачки макромолекул. Такая сетка весьма лабильна. Под влиянием внешних силовых полей, а также при изменении температуры ее физические свойства - прочность, деформируемость - будут изменяться, причем доля вынужденной эластичности при повышении температуры возрастает. [c.136]


    IV. Релаксационный спектр с несколькими стрелками де Ь твия й с учетом температурной зависимости собственных частот или времен жизни релаксаторов позволяет сразу ввести в рассмотрение принцип температурно-временной эквивалентности, который, в свою очередь, наиболее наглядно иллюстрирует природу релаксационных состояний полимеров. Понимание реальности трех физических (релаксационных) состояний, которые не являются ни фазовыми, ни агрегатными, дает ключ к пониманию практически всех механических, электрических и магнитных свойств полимеров, а значит, и к управлению ими. (Напомним, что стрелка действия была введена без конкретизации природы силового поля, в которое помещена система). В действительности можно говорить вообще обо всех физических свойствах, включая и те, которые связаны с фазовыми равновесиями и переходами [15, с. 176—270 22]. [c.73]

    На некотором малом расстоянии от поверхности полимера, где на раствор влияет силовое поле мембраны, слой, находящийся в термодинамически менее выгодном состоянии, стремится к достижению устойчивого состояния, т. е. к полной или же к максимально возможной компенсации межмолекулярных сил. В данном случае это достигается в результате преимущественной сорбции молекул неполярных веществ на полимере. Следовательно, слой связанной жидкости и в этом случае также состоит как из молекул воды, так и из молекул растворенного вещества. Однако в этом слое, в отличие от связанного слоя водных растворов полярных веществ, компоненты сильно отличаются по подвижности, что обусловлено их свойствами, размером, молекулярным строением, а также природой межмолекулярных сил связи с полимером. При этом менее подвижными становятся молекулы неполярных веществ. [c.220]

    Тиксотропия - кинетика обратимого изменения реологических свойств полимеров в вязкотекучем состоянии, происходящего под влиянием приложенного внешнего силового поля. [c.407]

    Кристаллизация полимеров приводит к повышению их модуля упругости, твердости, прочности и других механических характеристик. Многие исследователи пытаются связать это со степенью кристалличности. При этом предполагают, что особенности механических свойств определяются главным образом аморфными участками, а кристаллиты в силовом поле или поворачиваются, или разрушаются. Установлено, что своеобразный характер деформации полимеров связан с фазовым превращением, происходящим в силовом поле, т. е. с процессом рекристаллизации. [c.23]

    Набухание соответствует неравновесному переходному состоянию системы от чистых сополимера и растворителя к их полному взаимному смешению. Согласно законам термодинамики самопроизвольное течение изобарно-изотермических процессов сопровождается уменьшением термодинамических потенциалов, поэтому можно считать, что причиной сорбции является стремление системы к выравниванию химических потенциалов компонентов. Набухание — это замедленный процесс смешения двух фаз. Из-за разницы в подвижности молекул компонентов набухание осуществляется диффузией растворителя в сополимер, тогда как макроцепи весьма медленно проникают в объем, занятый чистым растворителем. Диффузии сопутствуют процессы взаимодействия молекул растворителя со звеньями макроцепей, перемещения структурных элементов сополимера, изменение конформаций макроцепей. Полимеры (сополимеры) по своим механическим (реологическим) свойствам обладают ярко выраженной анизотропией (продольные свойства близки к свойствам твердых тел, в то время как поперечные приближаются к свойствам жидкостей), вследствие чего занимают промежуточное положение между твердыми телами и жидкостями. Силовое поле, наводимое диффузией растворителя в полимер, частично запасается в последнем, что приводит к возникновению комплекса релаксационных явлений или явлений вязкоупругости. [c.296]


    Физика полимеров в той части, которая рассматривает полимеры как конструкционные материалы, является сравнительно новым разделом физики твердого тела [15]. Физику твердого тела, и физику полимеров в частности, интересует связь между строением и свойствами веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, в которых можно выделить ряд важнейших подсистем (решетка, молекулы, атомные ядра, система электронов, система спинов, фононы и др.). Хотя указанные подсистемы связаны между собой, воздействия на твердые тела различных силовых полей (механических, электрических и магнитных) вызывают раздельное проявление их особенностей. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонанса, а также диэлектрическими и акустическими методами. [c.6]

    Часть третья — Свойства полимеров в силовых полях — отведена описанию поведения полимеров в по лях механических и электромагнитных сил. [c.12]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    Механические свойства полимерных материалов — это комплекс свойств, определяющих механическое поведение полимеров В данных условиях при воздействии на них внешних сил. Под действием силового поля полимерные материалы деформируются и при определенных механических напряжениях и времени воздействия разрушаются. Изменение различных механических свойств [c.34]

    Ребиндер и сотр. [366—368], изучая структурно-механические свойства растворов каучуков и других полимеров, показали, что даже малые добавки активной двуокиси кремния или суспензий глины к первоначально бесструктурному раствору вызывают образование в нем прочной сплошной структурной сетки. В то же время при введении неактивных наполнителей (например, мела) такие структуры не образуются. Эти данные дали основание полагать, что частицы наполнителя являются центрами возникновения сплошной пространственной структурной сетки, образующейся в результате ориентации макромолекул каучука под влиянием силового поля частиц активного наполнителя. Фиксирование молекулы полимера на поверхности частиц наполнителя, которое возможно также и в отсутствие растворителя, приводит, согласно Ребиндеру, к образованию вокруг частицы наполнителя оболочки из полимерных молекул, которые характеризуются повышенными показате- лями механических свойств. [c.191]

    Для решения проблемы создания полимеров с требуемыми физикомеханическими свойствами важнейшее значение имеет установление однозначной взаимосвязи между их строением (особенностями структуры и характера молекулярной подвижности) и макроскопическим поведением в условиях действия различных силовых полей. При этом наиболее ценную информацию дает исследование динамических механических свойств полимеров в широком температурно-частотном диапазоне, ибо для большинства полимеров механические свойства являются основными. [c.561]

    Молекулярная масса — одна из важнейших характеристик всякого высокомолекулярного соединения. Ее можно довольно точно определить, исследуя молекулярно-кинетические свойства растворов полимеров, например диффузию, движение в силовом поле (ультрацентрифугирование) и осмотическое давление. Остановимся на осмотическом методе определения молекулярной массы. [c.203]

    Слой адгезива, прилегающий к поверхности субстрата, испытывает действие силового поля поверхности и в ряде случаев отличается по структуре и свойствам от остальной массы. Этот вывод оказывается справедливым как для органических полимеров [14—24], так и для неорганических материалов. Так, структура цементного камня изменяется и на границе с частицами заполнителя, а структура железобетона — и вблизи поверхности стальной арматуры [4, с. 9, 12, 15]. Обнаружено изменение свойств стекла в области, примыкающей к поверхности металла, например в 2—3 раза возрастает электропроводность, повышается диэлектрическая проницаемость и тангенс угла диэлектрических потерь [9]. Структура, прочностные, электрические и магнитные характеристики вакуумных конденсатов различных полупроводниковых материалов зависят от типа подложки [25-27]. [c.11]


    Для проверки этого были изготовлены модельные образцы со специально созданным микрорельефом, который изучали с помощью сканирующего электронного микроскопа [103]. Удалось обнаружить, что гистерезис угла смачивания Аф, оцениваемый по разности углов смачивания при натекании ф и оттекании ф , возрастает на 15—25° нри растяжении пленки тефлона, в то время как с учетом микрорельефа эта величина должна была бы составить всего 6—10°. На этом основании был сделан вывод о том, что анизотропия шероховатости не может быть причиной наблюдаемого эффекта [112]. Очевидно, анизотропию смачивания деформированных полимеров следует объяснять [111] зависимостью поверхностной энергии твердого тела от деформации. Поскольку поверхностная энергия тензорная величина, это объяснение вполне убедительно. Согласно [112], анизотропия смачивания может быть вызвана анизотропией механических свойств деформированной подложки и, следовательно, анизотропией нормальной компоненты поверхностной энергии, а также анизотропией силового поля вокруг ориентированных макромолекул. Обнаруженная зависимость смачивания от деформации представляет несомненный теоретический и практический интерес. [c.121]

    Появление новых синтетических хорошо кристаллизующихся полимеров привлекло внимание В. А. Каргина к изучению зависимости механических свойств полимеров от их фазового состояния. Им был выполнен совместно с Т. И. Соголовой цикл систематических исследований механических свойств кристаллических полимеров. Этими работами были установлены закономерности деформирования таких полимеров в широком интервале температур, но в пределах их кристаллического состояния, в зависимости от химического строения полимеров и их молекулярного веса. В этих работах были выдвинуты также представления о процессе холодной вытяжки кристаллических полимеров (образование шейки) как о фазовом превращении полимера в механическом анизотропном силовом поле. Представлял также интерес цикл исследований температурных переходов полимеров с использованием для этих исследований термомеханического метода, который был осу- [c.11]

    В предыдущей главе были рассмотрены студни, образующиеся в результате набухания химически сшитых полимеров или в результате сшивания макромолекул, находящихся в растворе, как путем образования межмолекулярных химических связей, так и путем локальной кристаллизации полимерных молекул. Пространственная сетка таких систем состоит из отрезков макромолекул, находящихся между узлами , а деформационные свойства определяются конформационными изменениями этих отрезков цепей, которые, стремясь к хаотическому расположению (увеличение энтропии), препятствуют деформации системы при приложении внешнего силового поля. [c.81]

    Поэтому, в соответствии с понятием фазового превращения, такое скачкообразное изменение свойств вещества, происходящее путем скачкообразного изменения расположения его структурных элементов, следует считать фазовым превращением. Конечно, это превращение обладает многими особенностями (например, вне силового поля исходная и конечная фазы тождественны), но и само кристаллическое состояние полимеров особенное. [c.106]

    Полагая, что особенности механических свойств полимеров определяются в основном аморфным пространством и что кристаллиты в силовом поле только поворачиваются или разрушаются, некоторые исследователи пытаются связать механические характеристики полимеров непосредственно со степенью кристалличности. Однако во многих случаях однозначного соответствия между степенью кристалличности и механическими свойствами не наблюдается . Например, по данным рентгеноструктурного анализа было установлено что после термической обработки кристаллического полиамида 68 никаких заметных изменений в нем не произошло. Но при этом существенно изменилась сферолитная структура, что сильно отразилось на износостойкости полимера. [c.330]

    В низкомолекулярных телах, состоящих из небольших молекул, релаксационные процессы протекают чрезвычайно быстро — доли секунды. В полимерах, состоящих из больших гибких молекул, релаксационные процессы протекают сложно и связаны с изменением конформаций макромолекул. Гибкость молекул, обусловленная внутримолекулярным тепловым движением, связана с самостоятельным перемещением отдельных участков, величина которых может значительно меняется в зависимости от характера действующего силового поля. Следовательно, общий процесс релаксации в макрообразцах полимера будет складываться из многих отдельных нроцессов, характеризующихся различными временами релаксации. Иными словами, релаксационный процесс в полимерах характеризуется не одним каким-либо временем релаксации, как это наблюдается в низкомолекулярных телах, а целым набором таких времен от самых малых, присущих небольшим частям молекул, до очень больших, присущих большим частям пли молекуле в целом. Этим, собственно, объясняется большая зависимость механических свойств полимеров и полимерных материалов от времени действия и скорости приложения нагрузки. Этим же объясняется и изменение свойств во время отдыха или, как говорят, залечивание образцов. [c.249]

    Основная задача физики полимеров формулируется как установление связей между физическими свойствами полимеров и их строением. Общеизвестна научная и практическая важность решения этой задачи. К настоящему времени накоплен большой экспериментальный материал, который определяет многие закономерности поведения полимеров в различных силовых полях в широком интервале температур в зависимости от их химического строения, а также молекулярной и надмолекулярной организации. [c.3]

    В настоящее время общепризнанной является кинетическая концепция прочности твердых тел [1—3], в соответствии с которой под действием тепловых флуктуаций происходит разрыв молекулярных связей, а энергетический барьер разрыва снижается под влиянием механического напряжения. Нужно сказать, что кинетические представления, базирующиеся на термофлуктуационном механизме, составляют основу не только современной физической концепции прочности они лежат в основе современных представлений о деформационных свойствах твердых тел, ползучести, вязком течении, релаксационных явлениях [3]. Применимость этого подхода ко всем перечисленным процессам основана на том, что во всех этих случаях действию внешней силы подвергается система частиц, находящихся в тепловом колебательном движении, в результате которого происходит изменение локальных напряжений молекулярных связей. Тепловые флуктуации обеспечивают протекание элементарных актов межатомных или межмолекулярных перегруппировок, а механические напряжения снижают энергетический барьер для этих перегруппировок. Все эти процессы определяются энергией взаимодействия между элементами структуры, участвующими в элементарном акте перегруппировки, энергией теплового движения этих элементов, размерами элементов, которые в свою очередь могут зависеть как от структуры полимера, так и от условий испытания (температура, скорость нагружения, внешние силовые поля). [c.176]

    Механические свойства полимеров — комплекс свойств, определяющих механическое поведение полимеров при действии на них внешних сил. Под действием силового поля полимерные изделия деформируются и при определенных механических напряжениях и временах воздействия разрушаются. Изменение различных механических свойств полимерных изделий в силовом и температурном полях подробно рассмотрено в ряде монографий [1—9]. В данной главе рассмотрены механические свойства, изменение которых чаще всего определяется действием агрессивных сред на полимерные изделия. Важнейшими деформационными свойствами являются ползучесть— свойство твердых тел медленно накапливать деформации при воздействии постоянных напряжений и вязкость — свойство тел сопротивляться необратимому изменению формы. Важнейшими прочностными свойствами являются прочность, характеризующаяся напряжением, при котором происходит разрушение полимера в условиях нагружения, ведущегося в определенном режиме роста деформаций, долговечность, определяемая временем от момента нагружения до разрушения полимерного изделия при постоянном напряжении. [c.227]

    Для жидких низкомолекулярных систем времена релаксационных процессов очень малы, и в обычной жидкости, приобретшей анизотропию под действием внешнего поля (например, в потоке), изотропное состояние восстанавливается через короткий промежуток времени после снятия внешнего поля. Но если у изотропных низкомолекулярных жидкостей наведенная анизотропия сравнительно быстро исчезает, то у полимеров благодаря характерным для них большим временам релаксационных процессов, что вызвано малой подвижностью макромолекул, наведенная внешними силовыми полями анизотропия свойств (например, механических свойств) может сохраняться в течение очень продолжительного времени или вообще оказаться практически бесконечно устойчивой, хотя истинным термодинамически равновесным будет являться изотропное (аморфное) состояние. [c.27]

    Представления о наличии фазового превращения прп вытяжке кристаллических полимеров были выдвинуты Карозерсом [59] и дальнейшее развитие получили в работах Каргина с сотрудниками [70, 71, 91, 92]. Они считают, что под действием механического силового поля изменяется температура плавления кристаллитов и что наблюдаемые скачкообразные изменения свойств могут быть объяснены только явлениями рекристаллизации при вытяи<ке. Известно, что в полимерных кристаллах участки цепей расположены параллельно друг другу и что растяжение в направлении ориентации повышает температуру плавления, а в поперечном направлении— понижает ее. Прн вытяяске изотропного (неориентированного) Полимера температура плавления изменяется различным [c.80]

    Особенностью механического поведения полимеров является ярко выраженная температурно-временная зависимость их свойств, включая прочность, а также повышенная эластичность, которая обусловлена отсутствием осевой устойчивости длинноцепных молекул. Под влиянием стохастических тепловых импульсов, а также внешнего силового поля возникает относительное перемеще- [c.9]

    Если интересуются поведением растворов полимеров с точки зрения их реологических свойств, то рассматривают обычно вопросы транспорта, теплообмена в массе, изменения вязких свойств с изменением параметров. Но при формовании волокон возникает совершенно специфическая проблема, а именно проблема устойчивости жпдкой нити, находящейся под действием внешних силовых полей и поверхностного натяжения на границе раздела раствор — внешняя среда. В силу этого исследование процесса формования искусственных волокон начинается с анализа условий образования жидкой нити из раствора полимера при выдавливании его из тонкого отверстия фильеры. При этом важное значение имеет соотношение между вязкостью и поверхностным натяжением жидкости, способной к нитеобразованию. Критерием стабильности такой нити служит величина энергетического барьера, отделяющего нитевидное состояние жидкости от капельного. [c.292]

    Рассматривая свойства сетчатых полимеров, в проявлении которых важную роль играет время приложения механической нагрузки или любого другого силового ноля, следует несколько расширить понятие сетки, которое было дапо ранее. В проявлении упругих, прочностных и релаксационных свойств сетчатого полимера большую роль играют не только узлы между цепями, образованные ковалентными связями, но и узлы, образованные за счет ионных, координационных, водородных или ван-дер-ваальсовых связей, физических зацеплений и переплетений [1—6]. Последние проявляются, естественно, лишь в том случае, если время воздействия какого-либо силового поля на полимер соизмеримо со временем жизни физической связи между цепями. В этом случае все аморфные полимеры проявляют себя как сетчатые. Кристаллиты в полимерах также можно рассматривать как форму термически обратимых физических узлов. [c.196]

    Окончательное оформление и дальнейшее развитие все эти представления получили в упомянутых ранее работах Каргина и Соголовой [2—6], в которых показано, что весь комплекс механических свойств любых кристаллических полимеров определяется в первую очередь их кристаллическим фазовым состоянием. При деформации происходит не поворот кристаллов, который в системе цепных молекул невозможен, а рекристаллизация, обусловленная зависимостью температуры плавления кристалла от его ориентации относи-тель7Ю направления действия сил. Кристаллы, ослабляемые растягивающими силами, рекристаллизуются в кристаллы, упрочняемые силовым полем. Процессу рекрш таллизации также способствует неупорядоченность кристаллических полимеров. [c.84]

    Как показано нами ранее [1—4], фазовое состояние оказывает существенное влияние на механические свойства кристаллических полимеров. Механизм деформации кристаллических полимеров существенно отличается от механизма деформации аморфных полимеров и является единым для всех кристаллических полимеров. В отличие от теорий, имеющих распространение за рубежом [5], о двухфазном строении кристаллических полимеров, в которых определяющими считаются свойства и содержание аморфной фазы, мы полагаем, что характерные механические свойства таких полимеров определяются поведением именно кристаллической фазы, так как при деформации кристаллических полимеров происходит не переход аморфной фазы в кристаллическую, а осуществляется рекристаллизация кристаллической фазы под влиянием внешнего механического силового поля. При этом, конечно, и у кристаллических полимеров имеются такие температурные области, при которых начинается плавление полимерных кристаллов, и в этом случае механизм деформахщи кристаллических полимеров может быть осложнен наличием возникшей аморфной фазы. [c.303]

    Известно, что кристаллизация высокомолекулярных соединений не лишает их способности к проявлению больших деформаций. Особенность таких деформаций заключается в скачкообразном возникновении анизотропного участка, так называемой шейки , после достижения определенного значения внешнего напряжения. Последующий процесс деформации сопровождается нарастающим удлинением полимера за счет развития шейки и перехода всего образца в однородный ориентированный материал. Обычно величины деформаций на этой стадии достигают значений многих сотеи процентов. Изучение явления обратимости шейки при отжиге до температур, близких к температуре плавления полимера [1], а также структурных изменений, наблюдаемых при деформации [1,2], привело к заключению о том, что развиваемые в кристаллических полимерах большие деформации являются по своей природе высокоэластическими и возникают в результате фазового преврагцения, т. е. плавления изотропно расположенных кристаллов и образования за счет рекристаллизации благоприятно ориентированных по отношению к силовому полю новых кристаллов. Однако существует мнение, что большие деформации могут возникать за счет переориентации и изменения формы самих кристаллов без сопутствующего превращения внутренней структуры [3—5]. Последняя точка зрения также не противоречит современным представлениям о структуре кристаллических полимеров. Таким образом, в настоящее время не существует единого мнения об этом важном свойстве полимеров, что связано с недостаточным значением всех особенностей проявления больших деформаций в кристаллических полимерах. [c.336]

    Необычные вязкоупругие свойства полимеров не являются неожиданными, если принять во внимание сложные. молекулярные процессы, лежащие в основе любой макроскопической механической деформации. При деформации таких твердых тел, как алмаз, поваренная соль или кристаллический цинк, атомы перемещаются из своих равновесных положений иод действием силового поля, имеющего полностью локальный характер знание межатомных потенциа.тов позволяет в этом случае вычислить упругие постоянные [8]. При других механических яв.тепиях сказывается влияние дефектов структуры, имеющих размеры, гораздо большие, чем атомные [7, 8]. В обычной жидкости вязкое течен[1е отражает изменение во времени под действием напряжения характера распределения молекул, окружаю.щих данную молекулу. В данном случае связанные с эти.м явлением силы и процессы перераспределения также носят совершенно локальный характер зная их, прннципиа.тьно. можно вычислить вязкость [9]. [c.16]

    Полимерные студни первого типа образуются при набухании химически сшитых полимеров, и их каркас, или остов, состоит из отрезков макромолекулярных цепей, находящ,ихся между узлами (химическими сшивками). Химические связи между макромолекулами придают системе свойство нетекучести, а конформационные изменения статистических клубков отрезков цепей между сшивками, происходяшие под действием внешнего силового поля, обусловливают высокую обратимую деформацию (но механизму, отвечающему высокоэластическому поведению каучукоподобных полимеров). [c.25]

    Целесообразно ввести представление о граничном, или поверхностном, слое, под которым мы будем понимать слой, свойства которого изменяются под влиянием поверхности или вследствие наличия границы раздела по сравнению со свойствами полимера в объеме. Согласно Русанову [1], поверхностный, или граничный, слой характеризуется эффективной толщиной, за пределами которой отклонение локальных свойств от их объемных значений становится несущественным. Введение этего понятия возможно благодаря малости радиуса действия межмолекулярных сил, что обусловливает быстрый спад влияния одной из фаз на какое-либо свойство соседней фазы. Такое определение соответствует определению поверхности раздела Гиббса, которой приписываются свойства неоднородной межфазной области, в которой проявляется действие силовых полей двух фаз. [c.176]

    Лиофильность чистых полимерных поверхностей исследовалась мало. Сасаки [130] нашел, что для полимеров по мере замещения водорода хлором растет смачиваемость как водой, так и неполярными жидкостями. Зисман с сотр. [131, 132], исследуя влияние природы полимера на смачиваемость, установили, что для галогенирован-ных углеводородов смачиваемость водой растет с увеличением содержания хлора. Вследствие способности поверхностных молекул экранировать силовые поля нижележащих молекул адсорбция значительно изменяет поверхностные свойства твердого тела. [c.77]

    Известно, что на свойства полимера существенно влияют средний размер надмолекулярных образований и характер их распределения по размерам. Для кристаллизующихся полимеров малые концентрации частиц наполнителя способствуют образованию более совершенных надмолекулярных структур. При больших концентрациях создаются препятствия для развития кристаллических образований, что сопровождается амор-физацией полимера. Существенным является расположение частиц наполнителя в пространстве. Для эластомеров установлено, что наибольшее увеличение механической прочности наблюдается при введении тех наполнителей (саж), частицы которых образуют непрерывную цепочечную структуру. Структура частиц наполнителя определяется характером взаимодействия частиц (одна с другой и с макромолекулами). В последнее время стало возможно управлять процессом расположения частиц наполнителя в системе, накладывая на последнюю соответствующее природе наполнителя силовое поле [22]. [c.10]

    Если же используется такое свойство, как седиментация в силовом поле (ультрацентрифугирование, 112), то оседают прежде всего наиболее крупные молекулы они играют решающую роль в оценке молекулярного веса. Счедует отметить, что природные полимеры более однородны по молекулярному весу. [c.253]


Смотреть страницы где упоминается термин Свойства полимеров в силовых полях: [c.144]    [c.77]    [c.352]    [c.427]    [c.13]    [c.372]    [c.31]    [c.170]    [c.130]   
Свойства и химическое строение полимеров (1976) -- [ c.143 ]

Свойства и химическое строение полимеров (1976) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Силовые поля



© 2024 chem21.info Реклама на сайте