Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование растворов. Растворимость

    При моделировании экстракционных процессов основная задача сводится к математическому расчету концентрации компонентов, перешедших в экстрактную фазу, и последующему расчету коэффициента распределения. Построив кривую равновесия, можно рассчитать основные показатели разделения при одноступенчатой или многоступенчатой экстракции. Уравнение параметра растворимости Гильдебранда характеризует относительную растворяющую способность растворителя. В уравнении не учитывается второй компонент, с которым при образовании раствора взаимодействует первый. Природа растворяемого компонента может быть самой различной, и поэтому энергия взаимодействия должна меняться в широких пределах. [c.217]


    Кремниевые кислоты. 1. Образование гидрогеля кремниевой кислоты. К 5 мл концентрированного раствора растворимого стекла добавьте из бюретки 3 мл раствора НС1 (1 1) и тщательно перемешайте жидкость стеклянной палочкой. В результате образования кремниевой кислоты содержимое пробирки застывает в виде прозрачного геля. Напишите уравнение реакции. [c.208]

    Механизму действия моющих и диспергирующих присадок посвящено большое число исследований [15, с.. 89]. Действие таких присадок сводится в основном к тому, что они переводят нерастворимые в масле вещества в суспендированное состояние, удерживают мелкодисперсные частицы во взвешенном состоянии, не давая им укрупняться и оседать, а также разрыхляют и смывают отложения с поверхностей деталей. Кроме того, моющие и диспергирующие присадки могут влиять на процессы окисления масел, направляя их в сторону образования соединений, растворимых в масле. Поскольку моющие и диспергирующие присадки являются соединениями различных классов и по эффективности действия существенно различаются, предполагается, что механизм их действия неодинаков. Например, моющее действие нафтенатов свинца и кобальта объясняют их высокой способностью растворять осадки, влияние фенолятов металлов связывают со способностью нейтрализовать кислотные продукты окисления и образовывать вещества, действующие как антиокислители. [c.94]

    Выполнение работы. В пробирку с осадком иодида меди (I), полученным в опыте 6, прибавить несколько капель раствора тиосульфата натрия. Наблюдать полное растворение осадка, происходящее вследствие образования хорошо растворимого. комплексного тиосульфата меди (I). [c.201]

    Очень существенное значение для получения коллоидных систем имеет концентрация реагирующих растворов. В результате химических реакций, вриводя-щих к образованию плохо растворимых веществ, при малых концентрациях реагирующих веществ получаются золи, при больших концентрациях — осадки и при весьма больших концентрациях — гели. Это хородио можно проследить ца примере реакции желтой кровяной соли К<[Ре(СК)б] и хлорида железа РеСЬ, в результате которой образуется берлинская лазурь Ре4[Ре(Ш)в]э- Если быстро смешать в эквивалентных количествах концентрированные растворы хлорида железу и желтой кровяной соли, то берлинская лазурь выделяется в виде густого геля. Небольшое количество этого геля при размешивании в большом объеме воды дает стойкий золь. Если вместо концентрированных растворов исходных веществ взять 10-кратно разбавленные растворы, то в результате реакции образуется осадок, не способный переходить в золь, сколько бы его не размешивали. Наконец, если растворы хлорида железа и желтой кровяной соли разбавить очень сильно и затем смешать, то получится устойчивый золь берлинской лазури. [c.227]


    Из других работ М. В. Ломоносова в области физической химии необходимо указать еще на его работы по изучению растворов. Ломоносов изучал выделение и поглощение теплоты при образовании растворов, растворимость и зависимость ее от температуры, явления кристаллизации и др. Он первым установил, что водные растворы солей замерзают при температуре более низкой, чем чистая вода, и что повыщение концентрации раствора вызывает понижение температуры ею замерзания. [c.13]

    Из важных работ М. В. Ломоносова в области физической химии необходимо указать еше на его работы по изучению растворов. Он изучал выделение и поглошение теплоты при образовании растворов, растворимость и зависимость ее от температуры, явление кристаллизации и др. Он первым установил, что повышение концентрации раствора вызывает понижение температуры его замерзания. [c.15]

    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]

    Наряду с понятием идеальный газ введем понятие идеальный раствор. Если раствор образован двумя неограниченно растворимыми друг в друге жидкостями, близкими по свойствам, то силы взаимодействия между частицами в растворе существенно не отличаются от таковых в чистых жидкостях. При этом образование раствора не сопровождается тепловым эффектом и объем его равен сумме объемов компонентов. [c.33]

    ОБРАЗОВАНИЕ РАСТВОРОВ. РАСТВОРИМОСТЬ [c.165]

    Ограниченная взаимная растворимость двух жидкостей имеет место только в тех системах, в которых образование раствора сопровождается поглощением значительного количества теплоты. В этом случае парциальные давления пара обоих компонентов в растворе превосходят парциальные давления пара в соответствующих простейших системах (положительные отклонения даВ ления пара), что облегчает выделение обоих компонентов из раствора. [c.330]

    В 100 мл насыщенного раствора с пл. 1,18 г/см содержится (20,773-118)/(20,773+100) = 20,296 г безводной соли. Для приготовления такого раствора требуется х = (20,296/152) 278 = = 37,1203 г кристаллогидрата, которые займут объем х/1,9 = 19,537 мл. Количество воды, необходимой для приготовления 118 г насыщенного раствора из 37,1203 г кристаллогидрата, составит 118 — 37,1203 = 80,8797 г или 80,8797 мл. Суммарный объем кристаллогидрата и воды составит 80,8797+19,537 = 100,4167 мл, что больше объема получаемого раствора (100 мл). Увеличение давления смещает равновесие в сторону уменьшения объема, т. е. в сторону образования раствора. Растворимость сульфата железа увеличится. [c.186]

    Применение содового раствора способствовало образованию трудно растворимых фтористых соединений, которые оседали на стенках аппаратов и трубопроводов, забивали насадку абсорберов, что приводило к росту сопротивления системы, вынужденным остановкам реакторов и большим выбросам вредных веществ в окружающую среду. [c.57]

    Если бромид серебра обработать раствором иодида калия, то равновесие сместится в направлении образования менее растворимого иодида серебра (ПР=8,3-10  [c.87]

    Влияние ПАВ на устойчивость дисперсных систем фундаментально изучено Ребиндером и его школой. Результаты их исследований показали, что вследствие адсорбции ПАВ на поверхности дисперсных частиц происходит уменьшение поверхностной энергии системы. Это приводит к повышению ее термодинамической устойчивости, что обеспечивает и коллоидную устойчивость. Такие системы обладают настолько высокой устойчивостью, что даже приобретают способность к самопроизвольному образованию — коллоидную растворимость. Таковы, например, растворимый кофе, представляющий собой тонко помолотый кофейный порошок, обработанный пищевыми поверхностно-активными веществами колларгол, являющийся порошком металлического серебра, обработанным медицинским желатином и др. Эти препараты самопроизвольно растворяются при смешивании их с водой. [c.282]


    Учение о растворах. В этом разделе изучаются молекулярные структуры растворов, различные их свойства, процессы образования растворов и особенности протекающих в них реакций, а также вопросы растворимости. [c.6]

    Уравнение (145.9) известно под названием уравнения Шредера, Так как Д ,Я>0, го при образовании идеального раствора растворимость твердого тела в жидкости всегда должна увеличиваться с ростом температуры. Это характерно и для многих неидеальных растворов труднорастворимых солей. В большинстве случаев уравнение Шредера справедливо для неидеальных растворов при замене молярной доли Х2 на активность а . Однако это возможно, если за стандартное состояние принята чистая жидкость (переохлажденная), а в твердой фазе нет ни кристаллосольватов, ни твердых растворов. При образовании неидеального раствора температура по-разному влияет на растворимость твердых тел в жидкостях. Если АН > О, растворимость твердых тел в жидкостях увеличивается с ростом температуры. Например, при повышении температуры от 273 до 373 К растворимость КоСг. 0, в воде увеличивается в 21,3 раза. Если ДЯ < О, растворимость твердых тел в жидкостях уменьшается с повышением температуры. Например, при повышении температуры от 273 до 373 К растворимость Сео(504)з в воде уменьшается в 38,2 раза. Если АН — == О, растворимость твердых тел в жидкостях не зависит от температуры. Например, при повышении температуры от 298 до 373 К растворимость УгО в воде не изменяется. [c.402]

    Существует несколько схем последовательных стадий в процессах анодной электрокристаллизации. Так, согласно Дж. Бокрису, анодная электрокристаллизация протекает через образование промежуточного растворимого комплекса, из которого в растворе вблизи электрода возникает твердый осадок, выпадающий затем на поберхность металла. Например, при [c.321]

    В растворе плавиковой кислоты выделения фторида кремиия ie происходит, так как он взаимодействует с молекз ла , я HF образованием хорошо растворимой комплексной кремнефторо-юдородной лислоты  [c.363]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Формула НСНО бесцветный газ с резким запахом легко растворим в воде, обычно в продажу поступают 35-40%-ные растворы. Реагирует с белками с образованием трудно растворимых, часто твердых веществ. Обладает дезинфицирующим д ствием. Восстшавлм-вает фелингову жидкость и аммиачные растворы солей серебра вследствие наличия функциональной группы очень реакциовноспо-собен. [c.196]

    Формула СвНз-СНО бесцветная маслянистая жидкость с запахом горького миндаля. Слабо растворим в воде. Восстанавливает аммиачные растворы солей серебра, но не восстанавливает фелингову жидкость на воздухе окисляется до бензойной кислоты присоединяет гидросульфит натрия с образованием трудно растворимого кристаллического соединения. [c.196]

    Долецалек [47] попытался количественно объяснить отклонения от закона Рауля химическими реакциями в растворах. По Долецалеку, отрицательные отклонения от закона Рауля объясняются ассоциацией компонентов друг с другом, а положительные отклонения — диссоциацией в растворе ассоциированных комплексов одного из компонентов. Однако эта теория, невидимому, справедлива лишь для ограниченного класса растворов. Для многих систем с точки зрения этой теории необходимо предполагать наличие сложных молекулярных соединений, реальное существование которых мало вероятно. Особенно большие затруднения возникают при объяснении отклонений от идеального поведения в системах, образованных ограниченно растворимыми компонентами. По Долецалеку необходимо принять, что в таких системах один из компонентов тем более ассоциирован и тем в большей степени диссоциирует в растворе, чем меньше его взаимная растворимость с другим компонентом. Несостоятельность такого объяснения очевидна. [c.60]

    Гидрирование проводят примерно до 50%-ной степени конверсии хинона, что соответствует образованию более растворимого хин-гндрона, после чего раствор снова поступает на окисление. Этим путем осуществляется окислительно-восстановительный цикл, приводящий к образованию пероксида водорода из молекулярного кислорода и водорода. По сравнению с электрохимическим синтезом пероксида водорода, при органических методах его производства расходуется гораздо меньше электроэнергии. [c.410]

    В качесие стандартного состояния любого компонента раствора, образованного неограниченно растворимыми друг в друге жидкостями, принимают состояние индивидуального жидкого вещества при той же температуре. [c.35]

    Увеличение концентраций ионов водорода в растворе приводит к тому, что анионы HDm , образующиеся при диссоциации растворенной части диметилглиоксимата никеля, соединяются с ионами водорода, и при этом образуются недиссоциированные молекулы диметилглиоксима. Следовательно, концентрация анионов HDm уменьшается, и катионы никеля переходят в раствор. Растворимость становится заметной уже при действии уксусной кислоты однако, если прибавить раствор уксуснокислого натрия, понижающий концентрацию водородных ионов уксусной кислоты до pH ==5 и выше, осаждение никеля диметилглиоксимом будет количественным. Еще лучше заканчивать осаждение в среде, содержащей смесь гидроокиси аммония и аммонийной соли. В сильнощелочной среде, например в 0,1 н. растворе NaOH, осадок Ni(HDm)j заметно растворяется, по-аидимому, в связи с образованием двузамещенной соли. [c.180]

    Рассмотрим теперь процесс сопряженного растворения и сопряженного осаждения соли. Эти термины означают превращение труднорастворимой соли в еще менее растворимую. Если, например, осадок aS04 обрабатывать раствором карбоната натрия, происходит взаимодействие с образованием менее растворимого СаСОз. [c.374]

    Получение растворимых карбонатного и оксалатного комплексов тория (IV). 1. К 3—5 каплям раствора нитрата тория осторожно по каплям добавьте раствор карбоната натрия до образования белого осадка октагидрата оксокарбо-ната тория ТНОСОз-вНгО. Прилейте избыток раствора карбоната натрия до полного растворения осадка. Наблюдайте образование хорошо растворимой в воде комплексной соли пентакарбонатоториата (IV) натрия 1 аб[ТЬ(СОз)5]. Получите карбонатный комплекс тория (IV) того же состава, растворив осадок ТН(0Н)4 в растворе карбоната натрия. Напишите уравнения реакций в молекулярной и ионной формах. [c.244]

    К 3—5 каплям раствора нитрата тория добавьте несколько капель раствора оксалата аммония. Выпадает белый осадок оксалата тория. К нему долейте в избытке раствор оксалата аммония и энергично перемешайте. Растворение происходит вследствие образования легко растворимого тетраоксалатоториата (IV) аммония (МН4)4[ТЬ(С204)41- Какова дентатность лиганда и координационное число тория в этом соединении  [c.244]

    Выполнение работы. К нагретому насыщенному раствору вольфрамата аммония прибавить несколько кристалликов борной кислоты Н3ВО3 так, чтобы после тщательного перемешивания на дне пробирки сохранился остаток кристаллов Н3ВО3. Несколько капель полученного раствора перенести в чистую пробирку и испытать на присутствие ионов WOi i для чего прибавить- несколько капель солн марганца (И) или свинца (И) (см. опыт 3). Отсутствие осадка объясняется образованием комплексной растворимой соли гетерополикислоты с 12 атомами йольфрама К9 1В А2 1- [c.238]

    В растворе плавиковой кислоты выделения фторида кремния не происходит, так как он взаимодействует с молекулами НР с образованием хорошо растворимой комплексной гексафторокремниевой (кремнефтороводородной) кислоты  [c.485]

    Существует несколько схем последовательных стадий в процессах анодной электрокристаллизации. Так, согласно Дж. Бокрису, анодная электрокристаллизация протекает через образование промежуточного растворимого комплекса, из которого в растворе вблизи электрода возникает твердый осадок, выпадающий затем на поверхность металла. Например, при анодном осаж-0,01н./1а0Н дении каломели на ртутном электроде в начале образуется ион Н 2С1+. Когда его концентрация у поверхности достигает критической величины, каломель выпадает в растворе. По X. Тереку и М. Флейшману образование центров кристаллизации из промежу-1111 точного соединения (не обязательно раство- [c.336]


Смотреть страницы где упоминается термин Образование растворов. Растворимость: [c.124]    [c.109]    [c.219]    [c.382]    [c.389]    [c.508]    [c.154]    [c.186]    [c.824]    [c.318]    [c.221]   
Смотреть главы в:

Физическая и коллоидная химия -> Образование растворов. Растворимость




ПОИСК





Смотрите так же термины и статьи:

Растворы Образование растворов

Растворы образование



© 2025 chem21.info Реклама на сайте