Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы молекулярная структура

    В ИОНХ АН СССР ученик А. Ф. Капустинского О. Я. Самойлов п его сотрудники исследуют строение водных растворов электролитов и гидратацию ионов [197—203]. При этом особое значение придается выяснению влияния, которое оказывает на свойства растворов молекулярная структура воды и ее изменение под действием ионов. [c.199]

    Применение двуокиси серы хорошо известно. Вода и водные растворы недавно исследовались для выделения толуола из бензина [78]. Однако можно вывести некоторые основные закономерности для активности всех рассмотренных растворителей. Известно, например, что растворители будут осуществлять разделение в зависимости от молекулярного веса и молекулярной структуры. В одном и том же гомологическом ряду углеводороды с более низким молекулярным весом будут более растворимы. [c.281]


    В этом разделе мы приводим результаты исследований связи между молекулярной структурой различных эластомеров, полученных методом полимеризации в растворе, и условиями их синтеза, а также данные о молекулярной структуре некоторых каучуков, выпускаемых в опытном и промышленном масштабе. [c.56]

    О молекулярной структуре растворов [c.161]

    В настоящем курсе основное внимание будет уделено термодинамике растворов, которая в своей общей форме не зависит от сведений о молекулярной структуре растворов и о молекулярных взаимодействиях. В конце раздела даны очень краткие сведения о молекулярных моделях некоторых простейших классов растворов и некоторые результаты статистической теории этих растворов. [c.168]

    Предел расслаивания раствора нескольких ВМС зависит от их природы и молекулярной структуры, соотношения и ММР полимеров смеси, температуры, присутствия примесей и других факторов. [c.76]

    Как мы уже отмечали, тип строения вещества определяется прежде всего тем, какие связи соединяют его структурные единицы,—межмолекулярные или межатомные. Мы рассматриваем в этой главе молекулярные соединения, построенные из структурных единиц, связанных сравнительно слабыми межмолекулярными связями, включая в определенных случаях водородные связи. Благодаря этому в твердом состоянии все они -имеют кристаллическую структуру. Твердые молекулярные соединения, построенные из молекул, связанных ван-дер-ваальсовскими связями, называются молекулярными кристаллами. В молекулярных твердых растворах в структуру молекулярных кристаллов входят разные молекулы. Заметим, что с химической точки зрения твердые молекулярные растворы — это молекулярные соединения. [c.20]

    Учение о растворах. В этом разделе изучаются молекулярные структуры растворов, различные их свойства, процессы образования растворов и особенности протекающих в них реакций, а также вопросы растворимости. [c.6]

    Электростатическая теория позволяет рассчитать ряд свойств растворов сильных электролитов, которые находятся, однако, в удовлетворительном согласии с опытом лишь для весьма малых концентраций раствора, порядка 0,01 М и менее. Ряд фактов эта теория объяснить не может. Все это связано с неточностью принятых допущений. При малых расстояниях между ионами силы их взаимодействия не могут быть сведены лишь к электростатическим. Учет взаимодействия ионов с растворителем не должен игнорировать молекулярную структуру растворителя простым введением диэлектрической проницаемости. Характер этого взаимодействия зависит от строения и других индивидуальных особенностей ионов электролита и молекул растворителя и изменяется с разбавлением раствора. Представление о полной диссоциации электролита должно быть дополнено учетом ассоциации ионов и образования комплексных ионов и молекул. [c.214]


    Молекулярно-кинетическое условие образования раствора определяется процессом диффузии частиц растворенного вещества в растворе, изменением структуры растворителя и межмолекулярным взаимодействием. Процесс диффузии обусловлен различием концентраций веществ в разных частях объема раствора. Диффузия протекает до тех пор, пока не выравняется концентрация по всему объему раствора. Самопроизвольный процесс растворения протекает до получения насыщенного раствора. В насыщенном растворе устанавливается равновесие, при котором химический потенциал индивидуального растворяемого вещества равен химическому потенциалу этого вещества в растворе. С молекулярно-кинетической точки зрения, раствор становится насыщенным, когда скорость, с которой частицы отрываются от поверхности твердого вещества и переходят в раствор, равна скорости оседания частиц из раствора на той же поверхности. При образовании любого жидкого раствора изменяется структура растворителя, появляется новая структура с иным расположением частиц. В связи с этим изменяются и силы межмолекулярного взаимодействия. [c.72]

    Лиофобные золи — гетерогенные (микрогетерогенные) системы, и в этом отношении их нельзя относить к истинным растворам. Лиофильные золи — однофазные системы, обладающие многими свойствами истинных растворов. Вследствие высокой поверхностной энергии лиофобные дисперсные системы термодинамически и кинетически не устойчивы. Лиофильные коллоиды устойчивы. От истинных растворов они отличаются размером частиц и формой (длинные нитеподобные и свернутые в клубок молекулярные структуры). [c.424]

    Особенности растворов электролитов. Важная особенность растворов электролитов состоит в образовании молекулярных структур между ионами и молекулами растворителя за счет ионных и ковалентных связей в отличие от растворов неэлектролитов, где образуются в основном межмолекулярные структуры за счет сил Ван-дер-Ваальса и водородных связей. Между молекулами растворителя в обоих случаях образуются межмолекулярные структуры, которые называют надмолекулярными. [c.223]

    При анализе взаимосвязи структуры растворителя и растворимости в нем различных соединений, особенно со сложной молекулярной структурой, следует помнить, что большинство органических растворителей полуфункционально. Они содержат как полярные, так и неполярные группы. Например, одноатомные спирты имеют полярную функциональную гидроксильную группу и неполярную— алкильный радикал. Если первая из них склонна к структурированию и сильной специфической сольватации полярных молекул (или отдельных нх фрагментов), то вторая ве способна заметно структурироваться. Она сильно соль ватирует лишь неполярные молекулы или их фрагменты (универсальная сольватация). Не удивительно поэтому, что низшие спирты растворяют как полярные, так и неполярные молекулы. В связи с этим можно рассматривать полифункциональные растворители как смесь полярных и неполярных растворителей с чрезвычайно прочной связью двух компонентов. [c.246]

    Наливают в три пробирки по 2 мп дистиллированной воды и добавляют в первую пробирку приблизительно 50 мг хлорида натрия, во вторую - несколько капель СС1 , в третью - несколько кристалликов фенола (ядовит, обжигает кожу ). Содержимое пробирок перемешивают стеклянными палочками и нагревают. Наблюдают, в каких пробирках вещество растворилось. Объяснить, какая связь существует между растворимостью и молекулярной структурой растворителя и растворяемых веществ  [c.100]

    Величина изотропного сдвига зависит от иона редкоземельного металла, входящего в состав хелатообразующего лиганда. На рис. 12.11 показаны сдвиги для 2-протона хелатного бис-аддукта 4-пиколина с трмс-(динивалоилметанато)лантаноидом, Еп(с1рт)з [50]. Аналогичные тенденции обнаружены и для других субстратов. Изменение природы металла не дает новой информации о молекулярных структурах в растворе, если исходить из изменения при этом величин сдвигов, поскольку появляются новые неизвестные. [c.195]

    Таким образом, молекулярная структура растворителя имеет весьма большое значение для свойств растворов электролитов. [c.88]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]


    Решение этой задачи требует построения общей теории взаимодействия разнородных молекул, т. е. решения основной задачи молекулярной физики. Для развития общей теории и частных обобщений изучаются молекулярная структура растворов и различные их свойства в зависимости от состава. В нашем курсе осг1овное внимание будет уделено термодииа.чическим свойствам растворив. [c.19]

    Молекулярная структура водных растворов. Ознакомимся теперь с некоторыми основными результагами экспериментального изучения молекулярной структуры полярных растворителей и ионных растворов. Основными экспериментальными методами являются рентгеноструктурный анализ, изучение спектров поглощения и другие оптические методы. [c.421]

    Скорость диффузии растворенного вещества с большой молекулярной массой (>500) в раствор низка и значительно меньше скорости диффузии электролита. Поэтому влияние концентрационной поляризации на процесс ультрафильтрации намного сильнее, чем на процесс обратного осмоса. Концентрация у поверхности мембраны при ультрафильтрации может достигнуть такого значения, что на мембране может образоваться слой геля, который резко снижает скорость процесса. Для того чтобы повысить скорость ультрафнльтрации, приходится интенсивно перемешивать раствор или прокачивать его с большой скоростью (до 3—5 м/с) над мембраной. Однако в ряде случаев такой путь оказывается непригодным, так как приводит к резкому повышению расхода энергии на циркуляцию раствора, недопустимому повышению температуры раствора, разрушению структуры некоторых биополимеров и т. п. В этих случаях более рациональным может оказаться применение турбулизирующих вставок. [c.174]

    Пособие составлено а соответствии с программой по физической химии для химических специальностей химико-техвологических вузов и факультетов. В нем подробно изложены основные разделы курса физической химии квантовоиеханические основы теории хниическоЗ связи, строения атомов и молекул, спектральные методы исследования молекулярной структуры, феноменологическая в статистическая термодинамика, термодинамика растворов н фазовых равновесий, электрохимия, химическая кинетика, гомогенный н гетерогенный катализ. [c.2]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Молекулярное строение кристаллизующихся углеводородов обуславливает различную способность их к плотной упаковке при кристаллизации и образованию твердых растворов различной структуры. Исследования структуры кристаллов, образующихся при кристаллизации углеводородов разных гомологических рядов, показали /27/, что при кристаллизации из растворов нефтяных фракций все они образуют кристаллы орторомбиче-ской формы со ступенчатой слоистостью кристаллов, т.е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей. Наибольшие размеры и число ромбических плоскостей имеют кристаллы нормальных алканов. Наличие нафтеновых и особенно ароматических структур в составе молекул кристаллизующегося вещества приводит к уменьшению размеров и слоистости образующихся кристаллов. При совместной кристаллизации углеводородов различных гомологических рядов повторяются эти же закономерности образуются смешанные кристаллы переменного состава орторомбической структуры, при этом чем больше циклических углеводородов, тем меньше размеры кристаллов и число наслоений. Способность циклических углеводородов (циклоалканов и аренов) образовать смешанные кристаллы с алканами обусловливается наличием в их молекулах длинных алкильных цепей в основном нормального строения. При отсутствии таких цепей циклические углеводороды кристаллизуются при значительно более низких температурах. [c.27]

    Фуллерены С60 являются аллотропной формой чистого углерода со сферической молекулярной структурой в отличие от полимерных сеток алмаза и графита. В настоящее время известны многочисленные свойства фуллерена С60, многие из которых являются уникальными. Среди практически перспективных путей промышленного применения фуллеренов можно отметить синтез различных водорастворимых соединений С60, обладающих ценными фармакологическими свойствами синтез фуллеренпривитых полимеров, являющихся высококачественными смазочными и антифрикционными материалами. Процессы синтеза данных соединений осуществляют в растворах с использованием различных органических растворителей. Для выбора оптимальных условий синтеза, проводимого в растворах, приводящего к максимальным выходам целевого продукта химической реакции, а также для проведения процессов с максимальной скоростью и минимальными материальными и энергетическими затратами, необходимо знать особенности поведения фуллерена С60 в растворах различных растворителей и взаимодействие его с растворителем. Данные по структуре и фазообразованию фуллерена С60 в растворах отсутствуют. Кроме того, свойство растворимости фуллеренов в органических растворителях широко используют в процессах выделения их из фуллеренсодержащей сажи на стадии синтеза и разделения различных видов фуллеренов. Актуальность исследований свойств растворенного фуллерена С60 имеет также фундаментальный аспект, связанный с необычной структурой данной молекулы, являющейся объемным аналогом ароматических соединений с высокой плотностью я-электронов, находящихся в сферическом пространстве фуллерена. [c.6]

    Фуллерены являются единственной из трех известных в настоящее время аллотропных модификаций углерода (графит, алмаз, фуллерены), которые обладают растворимостью в широком классе органических растворителей [20]. Такая особенность фуллеренов связана с их молекулярной структурой, в отличие от сшитых полимерных сеток графита и алмаза. Свойство растворимости фуллеренов имеет широкое практическое применение. Прежде всего - в процессах выделения фуллеренов из продукта термического разложения графита в электрической дуге - фуллеренсодержащей сажи, а также при разделении смесей фуллеренов различного сорта, например, гюсредством хроматофафических методов. Фуллеренсодержащая сажа (Ф-сажа) представляет собой мелкодисперсный порошок черного цвета, основную долю которого (80-90 % по массе) составляет аморфный углерод. Остальные 10-20 % по массе Ф-сажи составляют фуллерены (80-95 % С60, 5-20 % - С70 и следовые количества высших фуллеренов - С7б, С78, С84, до С100). При обработке Ф-сах<и органическими растворителями (эксфакции) фуллерены количественно переходят в раствор, тогда как мафица из аморфного углерода является нерастворимой частью Ф-сажи. [c.40]

    Важное значение имеет конформационное состояние макромолекул в растворе, которое зависит от ее строения, природа дисперсионной среды, концентрации ВМС в растворе, температуры и наличия микроэлементов, которые являются причиной образования внутри- и межмолекулярных комплексов. Для нефтяных ВМС возможность образования той или иной конформации прежде всего определяется их молекулярным строением. Так, анализ данных [170] предполагает, что в состав асфальтенов могут входить ВМС, молекулы которых имеют плоскую конформацию вследствие того, что состоят из крупных конденсированных нафтено-ароматических фрагментов, соединенных непосредственно или через короткие мостики, не позволяющие молекуле сгибаться или складываться за счет вращения вокруг связей. Характерными для нефтяных систем могут бьггь макромолекулы, в которых нафтено-ароматические фрагменты с алифатическим и гетероа-томным "обрамлением" связаны между собой через несколько линейно связанных атомов углерода или гетероэлемента. В этом случае создается возможность складывания макромолекулы за счет сближения плоских фрагментов. Степень их сближения, которую можно характеризовать величиной угла пересечения плоскостей, проведенных вдоль плоских фрагментов, зависит от гибкости и длины связующего звена и стерических препятствий, создаваемых алифатическим обрамлением " плоских фрагментов, и их нафтеновой или гетероатомной частью. В результате образуется слоистая вторичная молекулярная структура с параллельной или непараллельной (зигзагообразной или спиралевидной) укладкой плоских фрагментов. Если макромолекула представляет собой разветвленную цепь плоских разнозвенных фрагментов, то слоистые структуры могут образовываться за счет складывания плоских фрагментов каждой ветви, и тогда макромолекула может рассматриваться как "гроздь" вторичных молекулярных складчатых структур, или за счет параллельной или почти параллельной укладки плоских фрагментов, входящих в состав различных ветвей макромолекулы, с образованием менее разветвленной вторичной молекулярной структуры. Образование такой конформации макромолекулы энергетически выгодно [c.82]

    Солюбилизирующая способность ПАВ возрастает во всех случаях, когда те или иные изменения молекулярной структуры приводят к повышению гидрофобных свойств их молекул и, следовательно, олеофильности образуемых ими мицелл. Так, солюбилизирующая способность растворов ПАВ возрастает при увеличении длины углеводородного радикала. Это хорошо видно на примере зависимости молярной солюбилизации 5т от числа углеродных атомов в алифатической цепи натриевых мыл жирных кислот (рис. 21). При [c.80]

    Количество солюбилизированного вещества увеличивается пропорционально концентрации раствора ПАВ в области существования сферических мицелл и резко возрастает при образовании пластинчатых мицелл. Солюбилизация зависит также от молекулярной структуры солюбилизата. Так, если в качестве солюбилизата применяют углеводород, то при уменьшении его молекулярного веса коллоидная растворимость повышается. Введение в солюби-лизат полярных групп обычно также увеличивает солюбилизацию. [c.412]

    Таким образом, в растворах электролитов возникает два типа связей — прочные между частицами в молекулярных структурах и менее прочные между частицами- в межмолекулярных структурах. В растворах неэлектролитов связи между частицами растворенного вещества и молекулами растворителя, так же как и между молекулами растворителя, осуществляются только за счет болёе слабых межмолекулярных взаимодействий. [c.223]

    Путем образования коагуляционных структур, возникающих под действием молекулярных (вандерваальсовых) сил сцепления коллоидных частичек, участвующих в интенсивном броуновском движении, и более крупных частичек, взвешенных в жидкой среде суспензии или коллоидного раствора. Такие структуры обладают сравнительно с кристаллизационными малой прочностью, пониженной остаточными тонкими прослойками жидкой среды в местах контакта между сцепляющимися твердыми частичками. Вместе с тем коагуляционные структуры обладают тиксотропными свойствами, т. е. способны к обратимому восстановлению после механического разрушения. [c.184]

    Методы введения растворов. Распыление растворов — самый удобный и распространенный метод введения вещества в пламя. При работе с электрическими источниками света растворы применяют реже. Обычно к ним прибегают, когда при работе с твердыми пробами слишком низка чувствительность анализа или не удается устранить в нужной степерш влияние состава и структуры образца на результаты. При введении растворов отсутствуют почти все те сложные процессы, которые именэт место при работе с твердыми образцами. Переход к растворам разрушает структуру пробы. Остается только влияние молекулярного состаоа пробы на результаты анализа. Поэтому при переводе пробы в раствор стараются получать для каждого элемента всегда одно и то же молекулярное соединение. [c.254]

    Твердый безводный [Al lsb имеет молекулярную структуру, благодаря которой хлорид алюминия способен хорошо растворяться в неполярных растворителях, а при нагревании до 180° С сублимироваться. Расплав [А1С1з]2 не электроироводен, в нем молекулярная структура сохраняется. [c.59]


Смотреть страницы где упоминается термин Растворы молекулярная структура: [c.142]    [c.503]    [c.163]    [c.195]    [c.19]    [c.308]    [c.20]    [c.73]    [c.76]    [c.77]    [c.80]    [c.80]    [c.46]    [c.275]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.152 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Раствор молекулярные

Структура молекулярная



© 2025 chem21.info Реклама на сайте