Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические потенциалы и токи коррозии

    Зависимость скорости анодного растворения от потенциала для большинства металлов имеет характерную форму, которая представлена на рис. 4. При протекании электрохимических процессов происходит перенос электрических зарядов через границу металл—коррозионная среда. В связи с этим скорости окисления металла или восстановление окислителя удобно представлять в единицах силы тока. Отмеченные на рис, 4 точки характеризуют следующие величины Е — равновесный потенциал металла, — потенциал коррозии (стационарный потенциал). Ей — потенциал пассивации, Е п —потенциал полной пассивации, пт — потенциал питтингообразования, Е ер — потенциал пере-пассивации, ip — сила тока обмена в равновесии М"++ пе — М, — плотность тока коррозии, нр — плотность критического тока пассивации. [c.25]


    Если в масле имеется вода, содержащиеся в нем коррозионно-активные вещества (органические кислоты, сернистые соединения и т. п.) диссоциируют в водном растворе на ионы, и тогда коррозия носит электрохимический характер. Электрохимическая коррозия, в отличие от химической, протекает в виде двух одновременных самостоятельных процессов — анодного и катодного, каждый 3 которых локализуется на определенных участках металла, контактирующего с маслом. Электрохимическая коррозия особенно интенсивна, когда обводненное масло контактирует с металлами, имеющими разный электрохимический потенциал, однако даже у одного металла всегда имеются химически неодно родные участки с различными потенциалами между ними при взаимодействии с электролитом и возникает гальванический ток. Разрушение металла при электрохимической коррозии происходит только на анодных участках, причем количество прокорродировавшего металла (Зм (в г) можйо определить из выражения [8]  [c.15]

    Катодная защита. Катодная защита заключается в катодной поляризации защищаемой металлической поверхности и придании ей отрицательного потенциала относительно окружающей среды при помощи источника постоянного тока. Защищаемое сооружение играет роль анода. Отрицательный полюс источника тока присоединяется к газопроводу, а положительный — к заземлению (аноду). При этом постепенно разрушается анодное заземление, защищая газопровод. Установка катодной защиты состоит из катодной станции (преобразователя— источника постоянного тока), анодного заземления, защитного заземления и соединительных кабелей. Установка автоматической катодной защиты, кроме того, включает неполяризующийся электрод сравнения длительного действия, датчики электрохимического потенциала. Основными параметрами установок катодной защиты являются сила защитного тока и протяженность защитной зоны. Катодную защиту подземных сооружений от коррозии применяют в тех [c.129]

    При электрохимической защите от коррозии резервуаров, сосудов—реакторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2.3.1.2 и рис. 2.12). [c.378]


    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    Уравнения (24.12) и (24.13), основанные иа кинетической теории коррозии, позволяют рассчитать стационарный потенциал и ток коррозии, если известны токи обмена и коэффициенты переноса частных электрохимических реакций, а также состав раствора. [c.492]

    Даваемые автором определения таких основных понятий, как коррозионный потенциал, ток коррозии, электрохимический потенциал и т. д., нельзя признать вполне удовлетворительными. Но нам казалось нецелесообразным изменять текст книги и нарушать тем самым ее целостность, особенно потому, что эти вопросы не являются здесь основными, а их правильное освещение можно легко найти в имеющейся у нас учебной и монографической лите ратуре. [c.6]

    Электрохимические поляризационные исследования проводили на образцах из сталей (все - толстолистовой прокат) путем снятия анодных и катодных поляризационных кривых, в специально разработанной прижимной трехэлектродной электрохимической ячейке с помощью потенциостата марки ЕР-20 А. Поляризацию начинали с катодной области (-1,0 В по хлорсеребряному электроду сравнения, ХСЭ) в анодную сторону. Это позволяет достаточно точно определить плотность тока коррозии и стационарный потенциал уже в ходе проведения эксперимента. [c.9]

    Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же, как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически гомогенной поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [54]. На рис. 59 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (232) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностатической поляризации в пределах тафелевских участков. [c.166]

    Электрохимическая защита от коррозии под напряжением направлена прежде всего на подавление работы коррозионного элемента в вершине трещины и имеет своим критерием величину наложенного сдвига потенциала (или плотности поляризующего тока) в вершине под действием внешнего источника тока. Однако внешняя поляризация в первую очередь распространяется на устье трещины [c.199]

    Наряду с другими параметра.ми коррозионного и электрохимического поведения металла в электролите, по поляризационным кривым можно рассчитать абсолютную скорость коррозии, напри.мер, методом экстраполяции кривой до стационарного потенциала. Если скорость электродного процесса контролируется скоростью электрохимической реакции, например, скоростью разряда ионов водорода или ионизации металла, то в полулогарифмических координатах зависимость потенциала от логарифма плотности тока выражается прямой линией. Экстраполируя эти прямые до значения стационарного потенциала, по оси ординат находят соответствующую величину тока коррозии, т.е. фактически скорость коррозии. [c.30]


    N1 На практике часто наиболее эффективны не прямые, а к о с -венные методы (в том числе электрохимические) определения показателей коррозии и коррозионной стойкости (например, за-щитный потенциал). Однако при этом должна быть заранее известна или специально установлена достаточная корреляция результатов прямых и косвенных измерений. В табл. 1.2 и 1.3 приведены данные для пересчета показателей коррозии, выраженных в различных единицах измерения для пересчета единиц плотности тока используется формула (1.6). [c.17]

    Электрохимическая коррозия —это взаимодействие металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекает не в одном акте. В случае электрохимической коррозии путь электрона велик по сравнению с размерами реагирующих атомов ввиду пространственного разделения участников реакции, электронные переходы совершаются упорядоченно и процесс сопровождается возникновением электрического тока ( тока коррозии ), а скорость процесса зависит от потенциала. [c.33]

    Величина защитной плотности тока для неизолированного сооружения /защ, фигурирующая в формуле (3-31), может быть рассчитана, исходя из скорости коррозии стали в данном типе грунта (см. стр. 245) или приравнена предельной плотности диффузионного тока по кислороду, так как по достижении диффузионного тока имеет место смещение электрохимического потенциала на 150—200 мв. [c.190]

    Эффективность электрохимической защиты двухэлектродной системы можно установить, пользуясь поляризационной диаграммой коррозии, приведенной на рис, 200. Пусть анодная кривая— кривая Е В, а катодная — Е°С. Точка пересечения этнх кривых О указывает нам силу коррозионного тока кор и стационарный потенциал Е , который устанавливается на обоих электродах рассматриваемой системы. Если вся система будет запо-ляризована до более отрицательного потенциала, например до Ей то сила тока на аноде уменьшится до значения /ь Анодный ток (ток коррозии) в нашем элементе полностью прекратится, если система будет заполяризована до потенциала Е . В процессе катодной поляризации поляризующий ток идет, с одной стороны, на подавление анодного тока (т. е. непосредственно иа защиту от коррозии), а с другой, — на поляризацию катода от потенциала Ех до потенциала Е . Поэтому сила поляризующего тока, как правило, должна быть больше достигаемого защитного эффекта. Сила защитного тока должна быть тем больше, чем больше катодная поверхность и чем меньше поляризуемость катода, Это значит, что при малой поляризуемости катода требуется очень большая сила тока. [c.300]

    Одной из особенностей электрохимической коррозии является зависимость скорости ее от электродных потенциалов анодной (1.1) и катодной (1.2) реакций. Как видно на рис. 5, в процессе коррозии значения электродных потенциалов изменяются потенциал анодной реакции (кривая /м) смещается в сторону более положительных значений, а потенциал катодной реакции (кривая /н) — в сторону более отрицательных. Кривые г м и н характеризуют зависимость скоростей анодной (растворение металла) и катодной (выделение водорода) реакций коррозионного процесса от потенциала — анодная и катодная поляризационные кривые. Точка пересечения анодной и катодной кривых указывает на оси абсцисс максимальную плотность тока коррозии, а на оси ординат — потенциал коррозии. [c.19]

Рис. 2,28. Зависимость плотности тока коррозии стали г корр (1) и контактного потенциала ДУк (2 и 3) от электрохимического потенциала электрода фэл. (Кривые 1 я 2 — 0,1 и. Ка2304 3—1 н. N32804 = 6 ч. Для сравнения кривых экспериментальные точки пронумерованы.) Рис. 2,28. <a href="/info/386270">Зависимость плотности тока</a> <a href="/info/71832">коррозии стали</a> г корр (1) и <a href="/info/3498">контактного потенциала</a> ДУк (2 и 3) от <a href="/info/1484591">электрохимического потенциала электрода</a> фэл. (Кривые 1 я 2 — 0,1 и. Ка2304 3—1 н. N32804 = 6 ч. Для <a href="/info/391514">сравнения кривых</a> <a href="/info/705590">экспериментальные точки</a> пронумерованы.)
    В пользу электрохимической гипотезы коррозионно-механического разрушения говорит большая локальная скорость растворения металла, которая выражается в высокой локальной плотности тока коррозии. По существующим в литературе оценкам ток коррозии ювенильной поверхности составляет 1 — 10 А/см , при наличии на поверхности того же металла оксидных пленок ток снижается до 10" — 10" А/см , т.е. до 9 порядков. Исследование з. ектродных потенциалов различных металлов в процессе образования ювенильных поверхностей непосредственно в электролите показало, что степень разблагораживания потенциала определяется свойствами защитных пленок. Чем выше защитные свойства, тем выше степень разблагораживания. Наибольшее смещение в отрицательную сторону потенциала по отношению к нормальному каломельному электроду отмечено у алюминия в 3 %-ном растворе МаС1( до — 1,46 В), у магния — в растворе щелочи (1,19 В — 1,74 В). У железа, никеля и меди в 3 %-ном растворе ЫаС1 потенциал смещался соответственно от —0,47 до —0,6 В от — 0,17 до —0,51 В и от — 0,21 ДО —0,44 В. У ряда титановых сплавов нами получено смещение потенциала при зачистке поверхности, непосредственно в коррозионной среде от (—0,75) (— 0,90) В до (—1,24) -ь (-1,27) В. [c.14]

    Дифференцировать поверхность на катодные и анод- ые участки, очевидно,. можно в том случае, если электрохимический потенциал на различных участках поверхности неодинаков. В некоторых случаях коррозии (при омическом сопротивлении коррозионных элементов, близком к нулю) может быть достигнута эквипотенциальность поверхности за счет ее поляризации локальными токами. Однако такая эквипотенциальность достигается только работой локальных элементов и принципиально отличается от эквипотенциальности идеальной гомогенной поверхности металла. [c.55]

    В тех случаях, когда значение коррозионного потенциала близко к равновесному потенциалу одной из сопряженных электрохимических реакций, скорость коррозии металла может быть вычислена путем подстановки выраже шя для равновесного потенциала в уравнение плотности тока коррозии. Например, коррозионное поведение амальгамы натрия в кислой среде характеризуется преимущественной анодной реакцией [c.365]

Рис. 240. Изменение скорости коррозии и электрохимического потенциала стали в 0,Ш НС1 в зависимости от плотности катодного тока Рис. 240. <a href="/info/21565">Изменение скорости</a> коррозии и <a href="/info/10734">электрохимического потенциала</a> стали в 0,Ш НС1 в зависимости от <a href="/info/28143">плотности катодного</a> тока
    Анализ рис. 3 и 4 показывает независимость значения потенциала свободной коррозии от тока электрохимической защиты. На графиках хорошо выделяются проблемные участки, где катодная защита не обеспечивает необходимого уровня защищенности. [c.248]

    Зная электрохимический потенциал металла и омическое сопротивление электролита при заданных условиях, можно определить скорость коррозии, так как под действием разности потенциалов между анодным и катодным участками возникает электрический ток, сила которого, согласно закону Ома, [c.11]

    В—кривая анодной поляризации —L— кривая катод-иой поляризации точка 5 определяет потенциал коррозии Кд и ток коррозии без применения электрохимической катодной защиты (без контакта с 2п) 1 2п—— анодная поляризационная кривая до присоединенного нового более сильного анода — протектора (2п) Vга—N — общая, суммарная анодная кривая для трехэлектродной гальванической системы Уу — общий потенциал трехэлектродной системы, т. е. общий потенциал системы после присоединения протектора Уу — т — внешний катод- [c.141]

    Проведены систематические исследования коррозионного поведения ряда ме таллов и сплавов в среде расплавленных карбонатов и галогенидов щелочных и щелочноземельных металлов. Показано, что в чистых расплавленных солях коррозия металлов имеет электрохимическую природу. Деполяризаторами выступают как компоненты солевого расплава (катионы щелочных и щелочноземельных металлов и комплексные анионы), так и примеси (растворенные газы H i, СЬ, О2). Показано, что если коррозия не осложняется образованием на поверхности металлов пленки твердых продуктов, то скорость ее (ток коррозии) контролируется диффузией ионов окислителя и продуктов коррозии в расплаве, и стационарный потенциал является важной количественной характеристикой процесса. [c.126]

    При установивщемся процессе самопроизвольного (без наложения внешнего тока) растворения металла скорости анодной и катодной реакций одинаковы. Равенство скоростей анодной и катодной реакций определяет стационарный потенциал металла в данном электролите и установившуюся скорость растворения. Из условия стационарности следует, что торможение хотя бы одной из реакций приводит к замедлению коррозионного процесса. Поскольку коррозия является электрохимическим процессом, то целесообразно применять электрохимические способы торможения анодной или катодной реакции. Поэтому электрохимические методы снижения коррозии предусматривают смещение потенциала как в отрицательном, так и в положительном направлении от стационарного значения. [c.9]

    Как показано выше (см. рис. 23, 27, 31 и 34), величина и характер изменения электродного потенциала в процессе коррозионной усталости железа, сталей, алюминиевых и титановых сплавов, а также изменение токов коррозии существенно зависят от амплитуды циклических напря-х(ений и отражают определенным образом состояние приповерхностного слоя испытываемого объекта. Так как электрохимические характеристики металла чувствительны к состоянию его поверхности, электрохимический анализ можно эффективно использовать для изучения начальной стадии коррозионно-механического разрушения металлов. [c.85]

    Образец исследуемого материала в форме тонкой, узкой, длинной пластины с ориентировочными размерами 150.. .300 х 5 х 2...3 мм соединяют с выносным датчиком АЭ-прибора. Свободный конец образца погружают в коррозионный раствор, заливаемый в коррозионную ячейку. Для сдвига электрохимического потенциала в электролит погружают вспомогательный электрод. Изменяя разность потенциалов между образцом и этим электродом с помощью внешнего источника тока, можно менять величину тока между ними, изменяя таким образом электрохимический потенциал образца и условия протекания на нем электрохимических реакций, стимулирующих коррозию. Погруженная часть образца изолирована защитным лаком по всей поверхности, кроме экспонируемой площадки размером 0,5... 1смЯчейка оборудована нагружающим устройством, обеспечивающим возможность задания деформации изгиба и, соответственно, растягивающих напряжений на экспонируемой пло -щадке до 150...300 МПа (15...30 кгс/мм ). С целью повышения достоверности результатов использовали соединение образца с датчиком в средней части образца, что позволяло, перевернув его и нанеся заново защитное покрытие на другие части, получить по четыре назвисимых измерения на одном образце. [c.251]

    Достоверность подобного электрохимического механизма межкристаллитной коррозии алюминиевых сплавов, содержащих медь, подтверждается тем, что на основе этой теории удается предсказать методы борьбы с этим опасным видом разрушения. Если бы удалось создать в системе электрод с более отрицательным потенциалом, зоны у границ зерен, вероятно, перестали бы разрушаться. Это можно, иапример, осуществить, цонизив потенциал тела зерна. Опыты подтвердили, что, если в такой сплав ввести небольшое количество магния, склонность сплава к межкристаллитной коррозии резко снижается. В этом случае коррозия концентрируется в основном на теле зерен, занимающих основную часть поверхности, и плотность тока у границ ничтожна. На аналогичном принципе и основана электрохимическая защита протекторами или плакирующими слоями, обладающими более отрицательным потенциалом. [c.260]

    В области питтинговой коррозии при отсутствии диффузионного торможения как в кислых, так и нейтральных средах наблюдается линейная зависимость логарифма плотности анодного тока роста питтинга от потенциала для всех исследуемых сталей, что свидетельствует об электрохимической природе питтинговой коррозии. Высказано предположение, что анодное растворение при этом идет не путем непосредственного образования ионов металла низшей валентности, а через промежуточный процесс образования окисной пленки и последующего ее химического растворения. [c.25]

    Некоторые исследователи, использующие электрохимические измерения, относительно легко определяли такие величины, как потенциал и ток коррозии при испытаний материала на коррозионную усталость. Таким образом, коррозионную усталость материала можно быстро оценить без длительного сбора лабораторных данных, которые необходимы в методе Мак Адама. Эндо н Комаи [19] получили уравнение, связывающее возрастание тока коррозии с количеством циклов при коррозионной усталости. Это уравнение, как установлено, аналогично уравнению, связывающим рост трещины с числом циклов и, следовательно, увеличение тока коррозии связано с полной длиной трещины, что подтверждено последующими измерениями. Это уравнение также учитывает величину переменных напряжений, частоту и температуру. Поскольку величина тока коррозии находится в определенной связи с потенциалом коррозии, то распространение коррозионно-усталостного разрушения может быть прослежено путем измерения потенциала. При дальнейшем продолхсении этой работы было показано [20], что произведение начальной плотности тока коррозии ( к) и полного времени до разрушения (ткр) связано с чувствительностью материала к надрезу (г]) и отношением значения усталостной прочности на воздухе и в коррозионной среде к), уравнением  [c.290]


Смотреть страницы где упоминается термин Электрохимические потенциалы и токи коррозии: [c.519]    [c.519]    [c.140]    [c.15]    [c.168]    [c.53]    [c.53]    [c.189]    [c.132]    [c.52]    [c.78]    [c.603]    [c.22]    [c.91]    [c.94]    [c.335]   
Смотреть главы в:

Защита металлов от коррозии лакокрасочными покрытиями -> Электрохимические потенциалы и токи коррозии

Защита металлов от коррозии лакокрасочными покрытиями -> Электрохимические потенциалы и токи коррозии




ПОИСК





Смотрите так же термины и статьи:

Коррозия электрохимическая

Потенциал электрохимический

Потенциал электрохимический коррозии



© 2025 chem21.info Реклама на сайте