Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство газовых смесей

    При выборе состава смеси учитывают границы взрываемости. Метано-воздушная смесь взрывоопасна при содержании 5,3—14,9% СН4, а аммиачно-воздушная смесь — при содержании 14,0—27% ЫНз. Таким образом, применяемая в производстве газовая смесь, содержащая 12—13% СН4 и 11—12% ЫНз, в воздухе взрывобезопасна. Однако такая исходная смесь находится близко к пределам взрываемости, и для предупреждения возможного нарушения состава предусматривают автоматическое регулирование соотношения газов. Для полной безопасности к исходной смеси добавляют азот. Температурой процесса задаются конкретно для каждого производства в зависимости от вида исходного сырья (природный газ, метано-водородная фракция с установок газоразделения и др.). При нарушении состава смеси (увеличении содержания в смеси любого из компонентов) возможно увеличение температуры выше установленного предела, что приводит к оплавлению контактных сеток и остановке всего процесса. Принципиальная схем.э получения синильной кислоты показана на рис. 16. [c.79]


    Абсорбция окислов азота необходима для создания условий безопасного ведения процесса, окислы азота могут быть использованы в производстве. Газовую смесь, содержащую окислы азота (N0 и NO2), нагнетают воздушным эжектором или вентилятором в керамическую или кислотостойкую колонну, наполненную насадкой и орошаемую раствором едкого натра. При взаимодействии едкого натра с окислами азота образуется раствор нитрита натрия, который может быть использован в производстве. Раствор едкого натра циркулирует в системе до достижения необходимой концентрации, после чего его заменяют свежим. Воздух, освобожденный от окислов азота, выводится из верхней части колонны. [c.211]

    В обратимых реакциях скорость процесса можно увеличивать, отводя продукт из реакционной зоны и тем самым уменьшая скорость обратной реакции. Из газовой смеси продукт реакции можно отводить путем конденсации (перевод газа з жидкое состояние) или поглощением жидкими или твердыми вешества-ми. Поглощение газа жидкими веществами называют абсорбцией, а поглощение твердыми — адсорбцией. Во многих производствах газовую смесь для этого выводят из реакционного аппарата, продукт отделяют, а не прореагировавшие вещества вновь возвращают в реакционную зону. В результате получается циклический процесс. Типичным циклическим процессом является синтез аммиака. [c.34]

    Так как при производстве воздушного газа обычно преследуется цель получения газовой смеси, содержащей максимально возможное количество окиси углерода, то наиболее целесообразно вести этот процесс при температурах выше 1000° К, так как при этой температуре содержание окиси углерода в газовой смесн может достигать 72%, при темнературе 1100° К—93% и при 1200° К уже 98% (табл. 2). Следует, конечно, иметь в виду, что состав газа, приведенный в табл. 2 отвечает смеси газов, которая может получиться путем обработки угля чистым кислородом. Однако, так как фактически при производстве воздушного газа пользуются воздухом или воздухом, обогащенным кислородом, то продукты газификации, т. е. газовая смесь, должны содержать не только углекислоту и окись углерода, но в значительном количестве азот. В таком случае расчет может быть выполнен следующим образом. [c.242]


    В производстве ацетилена образуются газовые сме си, содержащие взрывоопасные вещества (ацетилен, водород, метан и др.) и токсичные соединения (например, окись углерода). При получении ацетилена применяются различные органические растворители, также являющиеся горючими жидкостями (диметилформамид, N-метилпирролидон) или легковоспламеняющимися жидкостями (метанол). Наиболее токсичны из этих растворителей диметилформамид и метанол. При авариях или неправильной эксплуатации наличие в производственном цикле перечисленных веществ может явиться причиной отравлений, ожогов и других несчастных случаев. [c.138]

    Нестандартный способ производства серы на основе метода Клауса в неподвижном слое катализатора в режиме периодического реверса смеси [33-37] позволяет создать процесс, отличающийся от обсужденных ранее значительно меньшими капитальными и энергетическими (эксплуатационными) затратами. Реверс-процесс осуществляется следующим образом. В предварительно нагретый слой катализатора подается исходная газовая смесь с низкой температурой (120...160°С). При этом в реакционной зоне конденсируется образующаяся сера, которая снижает активность катализатора, вплоть до его полной [c.166]

    Аппараты погружного горения могут найти применение для концентрирования растворов в производстве катализаторов. Основное достоинство их заключается в отсутствии нагревательных поверхностей, на которых могут осаждаться соли при выпаривании растворов. В этих аппаратах продукты горения диспергируются в растворе на множество пузырьков, имеющих большую поверхность теплообмена. При температуре газов несколько выше температуры кипения раствора газ в пузырьках насыщается паром. При прохождении пузырьков через слой жидкости происходит ее интенсивное перемешивание, что ускоряет процесс испарения. Выходящую из аппарата паро-газовую смесь подают в конденсаторы скрубберного типа. Аппараты погружного горения позволяют получать наиболее концентрированные растворы при более низком )асходе тепла и топлива, чем в аппаратах других конструкций, а рис. 77 показана схема выпарного аппарата с погружным го-)ением производительностью до 2500 кг/ч по выпаренной влаге 6, 39]. Расход топлива составляет 0,07 кг/кг влаги, [c.208]

    В настоящее время известен ряд методов регенерации ОСК термическим ее расщеплением. Эксплуатация промышленных установок термического разложения отработанной серной кислоты алкилирования показала [I], что процесс ее разложения совместно с сероводородом позволяет получать газовую смесь, содержащую 502. и Н2О. 1 зовая смесь после очистки и осушки перерабатывается в товарную серную кислоту и олеум по типовой схеме контактного производства серной кислоты. Условно методы термического разложения могут быть разделены на две группы - высокотемпературные (800-1200°С) и низкотемпературные (150-350°С) [5]. [c.44]

    SO2 получают в производстве серной кислоты, сжигая самородную серу или обжигая серный колчедан, содержащий от 65 до 95% пирита. Окисление SO2 кислородом в SO3 происходит по современной технологии, когда газовая смесь SOg с Og в специальных аппаратах вступает в контакт с твердым ката- [c.327]

    Этот процесс оксосинтеза, который подробно описан в работе [24], представляет собой промышленный метод получения спиртов из олефинов. Начиная с 1949 г., производство спиртов этим методом увеличивается с каждым годом и в настоящее время достигает 225 тыс. т ежегодно. Эту реакцию способно катализировать почти любое соединение кобальта и сам кобальт, но истинными катализаторами следует считать дикобальтоктакарбонил Сог(СО)8 или гидрокарбонил кобальта НСо(СО)4. Обычно газовая смесь состоит из окиси углерода и водорода в отношении 1 1, температуру варьируют от 70 до 200 °С, а давление от 100 до 300 атм. Реакцию можно проводить в одну стадию, получая сразу спирты, или можно выделять альдегиды (гл. 10, разд. В.8), а затем восстанавливать их до спиртов. [c.218]

    Технологическая схема установки для производства водорода паровой каталитической конверсией представлена на рис. 100. Газ под давлением 2,6 МПа подогревают до 300—400 °С в подогревателе 7 и подают в реакторы 3 и 2, где он очищается от сернистых соединений. В смесителе 11 смешивают газ с перегретым до 400— 500 С водяным паром и подают паро-газовую смесь на конверсию в печь 12. Температура конверсии 800—900 °С. Тепло дымовых газов используют в аппаратах 5, 5 и 7. [c.269]

    Следует также учитывать, чю в сернокислотном производстве за последнее время произошли большие изменения как в используемом сырье, так и в технологическом оборудовании. Остановимся на проведенных в свое время испытаниях в производственных условиях, представляющих несомненно практический интерес и в настоящее время. Выбор сплавов для испытаний производился с учетом того, что наиболее агрессивным компонентом среды является серная кислота, причем учитывалось и то, что капли серной кислоты могут наряду с коррозионным разрушением производить и механическое изнашивание (эрозию), поэтому наибольший интерес представляют стали аустенитного класса. Хромистые и хромоникелевые стали не обладают высокой коррозионной стойкостью в серной кислоте, но учитывая, что газовая смесь содержит 10 — 12 % кислорода, который способствует сохранению пассивности, представилось целесообразным использовать в качестве объектов [c.39]


    Уменьшение количества стадий производства и переход к циклическим (замкнутым) системам можно считать двуединым направлением в развитии химических производств, приводящим к снижению затрат на капитальное строительство и уменьшению себестоимости продукции. Так, например, в настоящее время формальдегид производится окислением метанола, а метанол синтезируют из смеси СО и На, получаемой конверсией метана (природного газа) с водяным паром. Ведутся исследования по прямому окислению метана до формальдегида, т. е. по замене трехстадийного способа одностадийным. Соответственно снизятся капитальные затраты и повысится производительность труда обслуживающего персонала. Эффективность циклической системы можно рассмотреть на примере производства серной кислоты контактным способом (см. ч. 2, гл. IV). Ныне серная кислота производится по схеме с открытой цепью аппаратов, через которые последовательно проходит газовая смесь. Окисление диоксида серы происходит в пять стадий, абсорбция триоксида серы — в две стадии. Переход к циклической системе с применением кислорода и повышенного давления позволит снизить количество аппаратов в системе в 3 раза, в частности применять одностадийное окисление диоксида серы. При этом резко снизится количество диоксида серы в отходящих газах, т. е. одновременно решается экологическая проблема. Разумеется, далеко не все производства целесообразно переводить к одностадийным или к циклическим, но искать такие пути надо. [c.19]

    Паро-газовая смесь (п. г. с.) выносит из реактора мелкодисперсную золу, которая отделяется в золоуловителе 10. Последующие операции ничем не отличаются от обработки п. г. с. слоевого процесса. Сначала отделяется избыток серы в башне серной промывки 11, сера собирается в сборник 12, откуда может быть возвращена в производство. Далее газ промывается в башне 13 серо- [c.120]

    Процесс протекает при 1000 °С, такая высокая температура поддерживается за счет тепла этой сильно экзотермической реакции. К исходной смеси, содержащей примерно 12% метана, 11% аммиака и 77% воздуха, добавляют азот (чтобы избежать образования взрывоопасных концентраций) и направляют газовую смесь в контактный аппарат, который напоминает конвертор для окисления аммиака в производстве азотной кислоты. Катализатором являются сетки из платиново-родиевого сплава, расположенные друг над другом. [c.235]

    В ряде химических производств исходная газовая смесь дросселируется с высокого давления (например, давления транспортирования) до рабочего (0,1— [c.199]

    У нас в стране действуют комбинированные схемы синтеза метанола с производством чистого водорода, применяемого в процессах гидрирования [179]. В качестве исходного сырья используют газовую смесь, полученную в результате газификации кокса или полукокса. Образующийся в результате реакции водяного газа исходный газ очищается от соединений серы, проходит стадии конверсии избыточного оксида углерода, компримирования, очистки от диоксида углерода и синтеза метанола. Для обеспечения глубокой переработки оксида углерода и получения газа, обогащенного водородом, на стадии синтеза метанола поддерживают высокое соотношение Н2 СО в исходном и циркуляционном газах. Состав газовых потоков следующий (% об.)  [c.212]

    Из газовой смеси продукт реакции может отводиться путем конденсации, избирательной абсорбции или адсорбции. Во многих производствах с этой целью газовая смесь выводится из реакционного аппарата, а затем после отделения продукта вновь вводится в него — получаются циклические (круговые) процессы, например синтез аммиака (см. рис. 75), синтезы спиртов (см. рис. 156) и др. [c.78]

    Адсорбция сероуглерода из технологических газов [И 1-18]. При промышленном получении сероуглерода его содержание в выходящей из реакторов паро-газовой смеси колеблется в зависимости от способа производства от 30 до 90 объемн. %. Из-за высокой упругости паров сероуглерода извлечь его полностью из смеси обычной конденсацией не удается. Поэтому паро-газовую смесь после конденсаторов пропускают через абсорбционную установку, по выходе из которой газы все еще содержат до 4% [c.230]

    Технологические газы, поступающие в производство, тщательно очищаются воздух от механических и химических примесей в пенном газопромывателе и картонных фильтрах, а аммиак от примесей пылевидных и масляных частиц — в коксовом и картонном фильтрах. После смешения (газовая смесь должна содержать 10—12% МНз) газовый поток, разбавлен- [c.21]

    Сырьем для синтеза аммиака служит газовая смесь, содержащая 75% водорода и 25% азота. Такую азото-водородную смесь можно получить промывкой азотом отходящих газов каталитического риформинга или производства бутадиена, коксового газа, электролитического водорода и других содержащих водород газов. Ее можно также получать конверсией метана с водяным паром либо частичным окислением природного газа или другого углеводородного сырья. [c.27]

    В Токийском институте технологии разработана технология производства стирола и этилбензола из толуола и метана с использованием в качестве катализатора Ы(]1/СоО [142]. Через трубчатый реактор с катализатором пропускают при 650 °С газовую смесь из метана, толуола и кислорода. Конверсия толуола 23 %, селективность образования стирола 60 %, этилбензола -40 %, побочных продуктов не образуется. [c.236]

    Мембранная установка включает 12 мембранных аппаратов, каждый из которых имеет внутренний диаметр 0,1 м и длину 3,0 м, и смонтирована на площади около 60 М-. Продувочные газы, содержащие после стадии синтеза и конденсации около 2% (об.) аммиака, под давлением 14 МПа направляют в скруббер водной промывки для окончательного улавливания КНз. Газовая смесь, очищенная от аммиака и содержащая 62,3% (об.) водорода, 20,9% (об.) азота, 10,4%, (об.) метана и 6,4% (об.) аргона, проходит через 8 последовательно установленных аппаратов I ступени очистки. Пермеат I ступени, содержащий 87,3% (об.) водорода, под давлением 7,0 МПа подают на вторую ступень компрессора свежей азотоводородной смеси и возвращают в производство. Ретант после I ступени разделения направляют на 4 последовательно расположенных мембранных аппарата П ступени. Обогащенный до 84,8% (об.) по водороду газовый поток под давлением 2,5 МПа возвращают на I ступень компрессора свежего газа и далее в цикл. Суммарная степень выделения водорода—87,6%. Обедненный водородом [г=20,8% (об.) И,] ретант после И ступени установки сжигают в трубчатой печи конверсии углеводородов. Работу установки хорошо иллюстрирует табл, 8.4. [c.278]

    Технологическая схема производства четыреххлористого углерода и тетрахлорэтилена из хлорорганических отходов изображена на рис. 51. Смесь отходов подают в испаритель 1, где отделяются тя>ьелые продукты, направляемые на сжигание. Пары хлорорганических веществ смешивают с избытком хлора (10—15% от стехиометрического) и подают в реактор 2. Последний выполнен в виде п/стотелого футерованного аппарата, в котором может находиться псевдоожиженный слой теплоносителя (кварцевый песок). Ввиду очень высокой экзотермичности суммарного процесса съем избыточного тепла осуществляют, вводя в реактор рециркулирующий сырой продукт и поддерживая температуру 500—590 °С. Горячая паро-газовая смесь из реактора попадает в закалочную колонну 3, где за счет орошения жидким конденсатом из водяного холодильника 4 температура снижается до 100—145°С. Тяжелые продукты собирают в кубе и возвращают в испаритель 7. Газовую смесь пополнительно охлаждают в рассольном холодильнике 5, от- [c.151]

    Все созданные на сегодняшний день совмещенные схемы работают по схо- eNn принципу. Так, японской фирмой Japan Gas hemi al разработан проект совместного производства аммиака и метанола [3], согласно которо.му из конвертированного газа вначале получают метанол. При этом за счет переработки оксида углерода концентрация СО в газе снижается. Далее остаточный оксид углерода окисляется кислородом воздуха и гидрируется до метана. Газовая смесь, очищенная от диоксида углерода, поступает на синтез аммиака. По схе- [c.211]

    Узел конденсации. В узле последующего охлаждения и конденсации происходит практически полное сжижение всех сопутствующих гелию компонентов, в результате чего получается газовая смесь, состоящая из 80-90 % гелия, 3-5 % водорода, остальное азот и иногда следы неона. Особенности технологии производства гелия на данном этапе предопределяют необходимость применения противоточной конденсации с целью уменьшения потерь гелия из-за растворимости его в сжиженных газах. Связано это с тем, что жидкость, стекающая в куб конденсатора, контактирует с входящим в нее бедным гелием газом, а в прямоточных конденсаторах она близка к равновесию с уже обогащенным гелием потоком на выходе из аппарата. Недостатком противоточных кондесаторов является необходимость использования низкой скорости парогазовой смеси, [c.161]

    Если применяется графитовый анод нри электролизе в хлорнощелочной водной среде, то присутствие ванадия в графите недопустимо, так как в этом случае хлор обогащается водородом и в результате может образоваться взрывчатая водородно-хлорная газовая смесь. Самая высокая степень чистоты требуется при производстве графита, применяемого в атомной промышленности, так как некоторые элементы, содержащиеся в графите в крайне низких концентрациях, могут поглощать нейтроны. Кроме того, под влиянием нейтронной радиации в некоторых элементах возникает активационный эффект, способствующий образованию радиоактивных изотопов. [c.256]

    Особенности технологического процесса получение азотной кислоты (цвет. рис. VI) — производство непрерывное, воздушноаммиачная смесь поступает в контактный аппарат, где происходит окисление аммиака. Необходимая температура поддерживается за счет выделяемой теплоты. Газовую смесь, содержащую оксид азота (II), охлаждают в топке котла-утилизатора. Полученную смесь, содержащую оксид азота (IV), направляют в поглотительную башню, где по принципу противотока происходит смешивание воды и газовой смеси с образованием азотной кислоты (концентрация не менее 60%). Более концентрированную азотную кислоту получают, добавляя концентрированную серную кислоту в качестве водоотнимающего средства. [c.186]

    Термическая активация этилена используется при производстве полиэтилена высокого давления, причем следы кислорода, добавляемого в количестве ниже нижнего предела самовоспламенения (взрыва) в газовую смесь, по-видимому, играют роль катализатора (через эпигруппы оксида этилена). [c.474]

    Обедненная газовая смесь из конденсатора направляется в теплообменник //, охлаждая исходную смесь до температуры /. Жидкая фаза из конденсатора поступает в емкость хранения нри температуре . Аппараты / и // установлены в помещениях основного производства и связаны коммуникациями хладоноснтеля с мащинно-аппаратным отделением холодильной установки, размещенной в специальном здании. [c.352]

    Очистка абгазов от примесей хлора может осуществляться также в результате хлорирования специально вводимых углеводородов [1813- В производстве 1,2-дихлорэтана способ очистки отходящего газа состоит в добавлении в газовую смесь этилена, количество которого соответствует содержанию хлора,,и пропускании ее через активированный утоль[182 . При этом практически весь хлор связывается, и получаемая далее соляная кислота отличается высокой чистотой. [c.73]

    С целью удаления НР из хвостовых газов производства фреонов смесь газов целесообразно промывать водным раствором борной кислоты, содержащим равновесное количество НС1 по отношению к его концентрации в газовой фазе [1953- Таким путем можно уменьшить содержание НР в газах от 1 до 0,01 масс.%. Химизм процесса удаления НР вьфажается реакцией  [c.74]

    При применении графитовых анодов п особенно анодов из РЬО2 в электролизерах получается водород с содержанием до 6—8% кислорода, т. е. образуется взрывоопасная газовая смесь. Необходимость разбавления этой смеси (водородом, азотом или воздухом) и доведение ее состава до взрывобезопасной услож няет производственную схему. При использовании ОРТА анодный выход хлората по току повышается, а выход кислорода но току снижается и процесс можно проводить в таких условиях, чтобы сразу получать водород с более низким содержанием кислорода, т. е. ниже взрывоопасного предела. Возможность получения более чистого взрывобезопасного водорода является важным преимуществом использования ОРТА в производстве хлоратов. [c.217]

    Производство формальдегида инициированным гомогенным газофазным окислением природного газа создано в ФРГ фирмой Gutehoffnungshutte AG [205, 206] (рис. 25). В качестве инициатора применяется смесь оксидов азота. Последняя получается в рамках основного производства сжиганием аммиака над платиновым катализатором. Исходный природный газ, содержащий около 98% метана, смешивается с воздухом в объемном соотношении 1 3,7 и добавляется к рециркулирующему потоку непрореагировавшего сырья (1 часть свежей смеси на 9 объемов рециркулирующего потока). Полученная газовая смесь нагревается до 400 °С за счет тепла продуктов окисления, после чего к ней добавляется 0,08% оксидов азота. Нагретая смесь направляется в трубчатый стальной реактор печного типа, футерованный керамическими материалами. Температура реактора доводится до 600 °С за счет сжигания части отходящих газов. Продукты реакции охлаждаются до 200 °С в теплообменнике и поступают на [c.71]

    Японская фирма Japan gas hemi al разработала проект совместного производства мета нола и аммиака [176]. Из конвертированного газа вначале получают метанол, при этом за счет переработки оксида углерода концентрация СО в газе снижается далее остаточный оксид углерода окисляется кислородом воздуха и гидрируется до метана. Газовая смесь, очищенная от диоксида углерода, поступает на синтез аммиака. [c.211]

    Количества выделяющегося при этом тепла достаточно для осуществления всего процесса. Практически при помощи этого процесса (в США его ведут под давлением 15 ати) получают газовую смесь, содержащую 24% СО, 6%С0 и 70%Н2. СО удаляют из смеси путем отмывки. Смесь СО и Н. пропускают над катализатором Сг—2пО при высоком давлении для получения метанола или смеси метанола и высших спиртов или же над железными или кобальтовыми катализаторами при низком давлении по Фишеру—Тропшу для получения бензина или смеси бензинов и спиртов. Согласно так называемому процессу гайдрокол [17], газовые смеси, полученные описанным выше способом конверсии метана под давлением, пропускают под тем же давлением при 300° над псевдоожиженным железным катализатором. Для осуществления этого процесса в США были построены два завода в Броунсвилле (штат Техас) и Хупетоне (штат Канзас), рассчитанные на суммарное производство 750 т/сутки бензина, 150 т дизельного топлива и 200 т кислородсодержащих соединений, в том числе 80 т этилового спирта. Уже при первом пуске этих заводов в эксплуатацию, т. е. в период 1950—1953 гг., встретились большие затруднения, а через год после вторичного пуска в эксплуатацию заводы пришлось остановить ввиду невозможности рентабельного получения бензина в соответствии с существующими рыночными ценами. [c.340]

    В вышеуказанных газах содержатся горючие компоненты — окись углерода, водород, метан. Газовая смесь, состоящая исключительно из горючих компонентов, за исключением азота воздуха в воздушном и паровоздушном газах, называется иде--альньш генераторным газом. Состав идеальных генераторных газов определяется из уравнений реакций их получения. Практический состав генераторных газов, конечно, отличается от состава идеальных , однако все газы обладают достаточно высокой теплотворной способностью (калорийностью) для того, чтобы быть использованными для обогрева в металлургической, стекольной, керамической и других отраслях промышленности, а также, как бытовое топливо. Помимо этого, некоторые газы после соответствующей обработки потребляются в значительных количествах как сырье для производства аммиака, метанола, высших спиртов и других продуктов. [c.444]

    Таким образом, на ряде катализаторов активация сернистого газа представляется обязательной стадией процесса. По-видимому, сказанное относится и к окислению SOg на активированных углях. Последние, наряду с растворами сернокислого марганца (при добавлении в газовую смесь озона) и промышленным железохромовым контактом, предложены как достаточно эффективные катализаторы очистки газов от примеси SOg. Это не исключает использования для той же цели и промышленных сложных ванадиевых катализаторов. Катализаторы на основе окиси железа, обладающие сравнительно низкой активностью даже при высоких температурах, но зато устойчивые к действию ядов, применяются в качестве фор-контактов в производстве серной кислоты нитрозным спосоСюм. [c.268]


Смотреть страницы где упоминается термин Производство газовых смесей: [c.76]    [c.578]    [c.69]    [c.223]    [c.51]    [c.178]    [c.33]    [c.297]   
Смотреть главы в:

Новый справочник химика и технолога Часть 1 -> Производство газовых смесей




ПОИСК







© 2025 chem21.info Реклама на сайте