Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород вязкость

    В 80 гг. на Куйбышевский НПЗ начала поступать угленосная нефть Прикамья. К 1985 г. ее доля возросла до 95 %. Угленосные нефти характеризуются высокой плотностью и вязкостью, высоким содержанием сернистых и асфальто-смолистых веществ, а также повышенным содержанием меркаптанов и сероводорода. В связи с этим на НПЗ возникла проблема исследования, интенсификации и внедрения более экономичных, малоотходных процессов и схем очистки нефтяных фракций от сернистых соединений с максимальным использованием существующего оборудования и катализаторов, выпускаемых отечественной промышленностью. В связи с повышением спроса на топливо ТС-] разработан и внедрен на НПЗ процесс очистки этого топлива от меркаптанов. [c.4]


    Для расчета вязкости индивидуальных углеводородных газов применяется формула ц=7 (6,6— —2,25 lg М) 10- , где (А — динамическая вязкость, Па-с Т — температура, К М — молекулярная масса. На рис. 1.4 приведены данные о вязкости газообразных алканов, а на рис. 1.5 — различных газов (воздух, кислород, оксиды азота и углерода, сероводород, во- [c.13]

    Данные и допущения. Радиальные градиенты скорости пренебрежимо малы режим течения поршневой . Лигроин испаряется полностью жидкость в питании отсутствует. Взаимодействие хорошо описывается реакцией десульфирования тиофена реакция имеет первый порядок и необратима в отношении образующегося сероводорода. Вязкость водород-углеводородной смеси при рабочих температуре и давлении приближенно равна 0,036 МПа-с. Доля пустот в слое (без учета пор в таблетках) составляет 0,40. Тиофен имеет критическую температуру 580 К и критический объем порядка 233 см /моль. [c.284]

    Многие установки гидродоочистки нефтяных масел имеют три параллельные взаимозаменяемые технологические линии для одновременной раздельной доочистки трех масел разной вязкости. Эти линии обслуживаются общей секцией очистки циркуляционного газа от сероводорода, а также общей системой для проведения периодической окислительной регенерации катализатора. [c.52]

    Примечание. Показатели качества нефтепродуктов определяются методами испытаний по следующим ГОСТам цетановое число — 3122—67, фракционный состав — 2177- 6, кинематическая вязкость — 33—66, кислотность и кислотное чис-сло — 5985—59, зольность — 1461—59, содержание серы — 1771—48, содержание меркаптановой серы — 6975—57, содержание меркаптановой серы потенциометрическим титрованием—9558—60, испытание на медной пластинке — 6321—69, водорастворимые кислоты и щелочи — 6307—60, механические примеси — 6370—59. содержание воды — 2477—65, температура вспышки в закрытом тигле — 6356—52, температура вспышки в открыто.- тигле — 4333—48. условная вязкость — 6258—52. коксуемость — 5987—51, коксуемость 10%-ного остатка дизельного топлива — 5061—49, температура помутнения и начало кристаллизации — 5066—56, температура застывания — 1533—42, содержание сероводорода — 11064—64, содержание смол — 1567—56, определение цвета — щ 2667—52, йодное число — 2070—55 содержание серы хроматным способом — 1431—64, [c.9]


    Материальный баланс процессов гидрокрекинга может изменяться в широких пределах в зависимости от условий процесса и перерабатываемого сырья. В качестве примера может быть приведен материальный баланс гидрокрекинга деасфальтизатов с последующей депарафинизацией широкой масляной фракции и разгонкой полученного масла на базовые масла-компоненты различной вязкости (без учета потребляемого водорода и получаемого сероводорода)  [c.240]

    Растворимость сероводорода в Селексоле" при давлении в абсорбере 7 МПа и температуре 20 С примерно в девять раз выше растворимости диоксида углерода. Серооксид углерода OS удаляется из природного газа примерно на 50 %. При понижении температуры разность в растворимостях извлекаемых компонентов газа и углеводородов еще более увеличивается, но понижение температуры сопровождается повышением вязкости абсорбента, и при температуре ниже минус 15 С он загустевает, образуя высоковязкую массу. [c.44]

    Бода, молекулы которой включают тяжелые изотопы водорода и кислорода, обобщенно называется тяжелой водой. Однако под тяжелой водой прежде всего имеют в виду дейтериевую воду ВгО . В природной воде 99,73% приходится на обычную воду НгО . Из тяжелых разновидностей в природной воде больше других содержится НгО (0,2 мол. доли, %), НгО (0,04 мол. доли, %) и НВО (0,03 мол. доли, %). Содержание остальных разновидностей тяжелой воды, в том числе и тритиевой ТгО, составляет не более мол. доли, %. Химическое строение молекул тяжелой воды такое же, как у обычной, с очень малыми различиями в длинах связей и углах между ними. Однако частоты колебаний в молекулЕ1Х с тяжелыми изотопами заметно ниже, а энтропия выше, чем в протиевой воде. Химические связи В—О и Т—О прочнее связи Н—О, числовые значения изменения энергии Гиббса реакций образования В2О и ТгО более отрицательны, чем для Н2О (-190,10, -191,48 и -185,56 кДж/моль соответственна). Следовательно, прочность молекул в ряду НгО, В2О, Т2О растет. Для конденсированного состояния разновидностей тяжелой воды также характерна водородная связь. Лучше других исследованы свойства дейтериевой воды В2О, которую обычно и называют тяжелой водой. По сравнению с НгО она характеризуется большими значениями плотности, теплоемкости, вязкости, температур плавления и кипения. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в протиевой. Более прочные связи В—О приводят к определенным различиям в кинетических характеристиках реакций, протекающих в тяжелой воде. В частности, протолитические реакции и биохимические процессы в ней значительно замедлены. Вследствие этого тяжелая вода является биологическим ядом. Получают тяжелую воду многоступенчатым электролизом воды, окислением обогащенного дейтерием протия, изотопным обменом между молекулами воды и сероводорода с последующей ректификацией обогащенной дейтерием воды. [c.301]

    С увеличением жесткости процесса улучшается цвет масла, но в большей степени снижается его вязкость, повышается температура застывания, возрастает также выход низкокипящих продуктов [16]. Для получения масел с заданной температурой вспышки легкие фракции отгоняют в отпарных колоннах. При этом удаляется также образовавшийся при распаде сероорганических соединений сероводород, улучшается запах масла. [c.247]

    Следствием этого является растворение в жидкости новых порций сероводорода и гидролиз твердой фазы. Диффузия сероводорода замедляется с увеличением вязкости жидкости, которая растет с уменьшением радиуса пор. Следовательно, можно предполагать, [c.54]

    Вязкость сортов топлива для тихоходных дизелей изменяется от 36 до 66 сст при 50° С, а температура застывания должна быть в пределах от —5 до -[-5° С. Допускается коксуемость до 3—4% и содержание воды и механических примесей до 0,1%. Во избежание коррозии и абразивного износа деталей двигателя сероводород, водорастворимые кислоты и щелочи в топливе должны отсутствовать, а его зольность не превышать 0,08%. [c.137]

    Действие сероводорода на кровь происходит в две фазы вначале количество эритроцитов повышается, затем падает, снижается содержание гемоглобина, повышаются свертываемость и вязкость крови. Окисление сероводорода в крови происходит очень быстро, зато 99% сероводорода удаляется из организма в течение 3-5 мин. Поэтому его обнаруживают в крови лишь в том случае, если скорость поступления НгЗ равна скорости окисления или превышает последнюю. [c.101]

    В диссертационной работе представлены результаты теоретических, экспериментальных и промысловых исследований, посвященных разработке и совершенствованию технологий борьбы с осложнениями при эксплуатации скважин на залежах аномальных нефтей. В основе этих технологий находятся новые химические реагенты и составы технологических жидкостей реагенты для снижения аномалий вязкости пластовой нефти составы для восстановления приемистости нагнетательных скважин жидкости для глушения скважин, сохраняющие коллекторские характеристики пород призабойной зоны пласта и обладающие свойствами нейтрализатора сероводорода антикоррозионные и консервационные жидкости для скважин эмульгаторы обратных водонефтяных эмульсий, применяемых для различных процессов нефтедобычи реагенты-гидрофобизаторы для обработки призабойной зоны пласта. [c.6]


    Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 I B по ASTM и в зоне разрушения находился в охрупченном состоянии ударная вязкость K V 4o при пониженной температуре составляла 12 Дж/см , относительное удлинение S — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса. [c.52]

    Сероводород — ядовитый газ. Плотность 0,96, т. пл. —82,9°, т. кип. —59,4°, критическая температура 100,5°, критическое давление 89 атм, поверхностное натяжение 25,43 дин, удельная электропроводность 0,2- 10 , диэлектрическая постоянная 8,6 и вязкость 0,0041 дин см. [c.111]

    На рис. 54 показаны зависимости содержания смол сернокислотных и си-ликагелевых, а также коксуемости нефти от содержания серы [124, 125] (при рассмотрении этих зависимостей нужно учитывать возможность отклонения фактических данных для конкретных нефтей от усредненных). Как видно, одновременно с увеличением содержания серы в нефти возрастают коксуемость и содержание смол. Увеличение содержания асфальтенов и смол, сопутствующее повышению сернистости нефти, показано и в работе [126] (рис. 55). В этой же работе показано, что нефти с более высоким содержанием серы характеризуются и более высоким содержанием ванадия и никеля (рис. 56), азота и значениями вязкости, плотности (рис. 57). Последнее отмечается также в других работах [127, 129]. Взаимосвязь содержания серы, ванадия и смолистых веществ объясняется [ГЗО] способностью находящегося в нефти ванадия восстанавливать сульфаты, присутствующие в пластовых водах, до сероводорода и серы и тем самым вызывать окисление нефти за счет кислорода сульфатов. [c.91]

    Снижение коррозионной агрессивности буровых растворов может быть достигнуто удалением из них кислорода, углекислого газа, сероводорода и других агрессивных газов. В настояш,ее время известно несколько методов дегазации бурового раствора. Механические методы дегазации основаны на разрушении структуры бурового раствора и могут осуществляться ситокон-венерами, гидроциклонами, виброситами и разбрызгиванием из сопел. Обычно содержание газа при этом снижается лишь до известного предела и зависит от вязкости, статического напряжения сдвига раствора и прочности пленки, покрывающей газовые пузырьки. Недостатком механической дегазации является возможность дополнительной аэрации в процессе интенсивного перемешивания раствора. [c.112]

    В схемах глубокой переработки нефти предусматривается использование тяжелых нефтяных остатков - гудронов и асфальтитов для получения Н2 и синтез-газа путем их газификации. Процесс газификации основан на неполном окислении углеводородного сырья кислородом, воздухом, обогащенным кислородом, в присутствии водяного пара или одним воздухом. Факельная газификация осуществляется в пустотелом реакторе. Основными продуктами являются окись углерода и водород, наряду с которыми образуются небольшие количества двуокиси углерода, иетана, сероводорода, выделяется также дисперсный углерод - сажа (от 0,1 мас.% для метана до 2-4 мас.%-тяжелых нефтяных остатков). Переработка тяжелых нефтяных остатков с температурой н.к. выше 500°С встречает затруднения, связанные с их высокой вязкостью, зольностью, температурой размягчения, коксуемостью, большим содержанием серы и металлов. [c.120]

    Уголь с нанесенным на него катализатором поступает в систему приготовления пасты. В качестве пастообразователя используют угольный дистиллят с температурой кипения 300— 400°С, который предварительно гидрируется под давлением 10 МПа на отдельной стадии. Для нормального ведения процесса паста приготавливается при равном соотношении угля и растворителя при большем содержании угля затрудняется транспорт пасты в системе вследствие ее высокой вязкости. Углемасляная паста, в которую вводится газообразный водород, предварительно нагревается в трубчатой печи и поступает в систему пустотелых необогреваемых реакторов с объемной скоростью 1,0—1,5 ч . За время пребывания пасты в реакторе (30—60 мин) протекают реакции гидрогенизации угля с образованием углеводородных газов С1—С4, аммиака, сероводорода и оксидов углерода [до 10% (масс.)], воды [3—5% масс.)] и жидких продуктов [80—90% (масс.)]. Так как процесс протекает с выделением тепла, для регулирования температуры в реакторы подается холодный водородсодержащий газ он служит также перемешивающим агентом. [c.83]

    Гидродоочистка применяется в основном для осветления масляных фракций. Одновременно уменьшается их коксуемость и содержание серы индекс вязкости обычно несколько увеличивается (на 1—2 единицы) температура застывания масла может повышаться на 1—3°С. Сырьем установок гидродоочистки являются остаточные и дистиллятные депарафинированные рафинаты. Выход гидродоочищенных масел превышает, как правило, 97% (масс.). В рассматриваемом неглубоком процессе образуется небольшое количество побочных продуктов углеводородных газов, сероводорода, отгона. Расход водорода на реакции, растворение в гидрогенизат и отдув составляет 0,2—0,4% (масс.) на сырье. Расход технического водорода, поступающего с установки каталитического риформинга и содержащего балластные газы, выше (от 0,6 до 1,4% масс, на сырье). [c.273]

    Многие установки данного назначения имеют три параллельные взаимозаменяемые технологические линии для раздельной доочистки трех масел разной вязкости. Эти линии обслуживаются общей секцией очистки циркулирующего газа от сероводорода. К каждой линии подведен инертный газ, используемый в периоды регенерации катализатора, а также для продувки трубопроводов и аппаратов. На некоторых установках отсутствует теплообменник 4 (см. рис. 90), и водородеодержащий газ смешивают с сырьем перед теплообменником 2, а не 3. При недостаточно высоком давлении свежего газа его вводят в сепаратор 19, а не в нагнетательную линию. Для установок гидродоочистки характерен однократный пропуск сырья через реактор. [c.276]

    Побочными продуктами гидроочнстки являются сероводород, углеводородные газы и отгон (к. к. ниже 350 °С). Сероводород используется для производства серы или серной кислоты, углеводородные газы применяются в качестве топлива непосредственно на установке, отгон добавляется к котельным топливам для снижения их вязкости. [c.367]

    Основное достоинство реагента — низкие вязкость и температура застывания (менее 223 К), что позволяет хранить его на открытых площадках и применять в холодное время года без предварительного подогрева. При лабораторном тестировании в жидких искусственных модельных средах (насыщенные сероводородом углеводороды, например бензин марки А-72, и 3%-й водный раствор ЫаС1) ингибитор показывает удовлетворительные защитные свойства. Его технологические свойства также соответствуют требованиям, предъявляемым к ингибиторам на промыслах нефти и газа. К недостаткам реагента относятся сильный неприятный запах, присущий пиридиновым основаниям, высокая токсичность, низкая устойчивость образующейся защитной пленки. Ингибитор Д-1 в течение некоторого времени применяли на ОНГКМ, где была отмечена его удовлетворительная защитная эффективность. Одной из проблем, вызванных применением реагента в газосборной системе ОНГКМ, явилась закупорка отложениями и продуктами коррозии импульсных трубок контрольно-измерительных приборов и автоматики и другого оборудования, что было обусловлено высокими детергентными (моющими) свойствами пиридиновых оснований. В связи с этим использование ингибитора Д-1 на ОНГКМ было прекращено. [c.345]

    Лабораторными исследованиями установлено, что при пропускании сероводорода через буровые растворы, стабилизированные УЩР, КМЦ-600, КМЦ-500, гинаном, крахмалом или сочетанием этих реагентов, происходит значительный рост вязкости и снижение pH буровых растворов. При значениях величины pH растворов меньше 6,0 они приобретают пастообразное состояние. Причем эти пласты обладают весьма высокой адгезией. На лопасти мешалки наматывается пастообразная масса в виде сальника. [c.261]

    Нефтью называется природная смесь углеводородов различных классов с различными сернистыми, азотистыми и кислородными соединениями. По внешнему виду нефть представляет собой маслянистую жидкость, обыкновенно бурого цвета, хотя встречаются нефти, имеющие более светлые оттенки коричневого цвета. Вязкость нефти различна и зависит от состава. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 10 ООО калорий на килограмм. В минералогическом отношении нефть относится к числу горючих ископаемых или каустобиолитов. Нефть практически ие содержит химически активных веществ вроде кетонов, спиртов и т. п. соединений, хотя в некоторых случаях имеет кислотный характер вследствие незначительного содержания кислот. Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов. Нефть часто сопровождается в природе различными окаменелостями, позволяющими определить геологический возраст нефти в ее современном залегании. Обыкновенно нефть сонровояодается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды. [c.5]

    В настоящей работе представлены результаты теоретических, экспериментальных и промысловых исследований, посвященных разработке реагентов для снижения аномалий вязкости пластовой нефти составов для восстановления приемистости нагнетательных скважин жидкостей для глушения скважин, сохраняющих коллекторские характеристики пород призабойной зоны пласта и обладаюнщх свойствами нейтрализатора сероводорода антикоррозионных и консервационных жидкостей для скважин эмульгаторов обратных водонефтяных эмульсий, применяемых для различных процессов нефтедобычи реагентов-гидрофобизаторов для обработки призабойной зоны пласта. Исследования проводились в соответствии с программой № 7 Академии наук [c.4]

    В соответствии с этим технические условия на Т-1, ТС-1, Т-2 и Т-5 предусматривают нормирование их по следующим показателям вязкость при 20, 0,-40 и —50° С в пределах 1—25 сст-, температура начала кристаллизации не выше —60° С йодное число не выше 3,5 содержание фактическ их смол не более мг на 100 лед топлива максимальное содержание серы 0,25% и кислотность не более 1 мг КОН на 100 мл топлива. Водорастворимые кислоты и щелочи, вода, механические примеси (а также сероводород для топлива Т-2) должны отсутствовать, а зольность не превышать 0,005%. Коррозионная [c.137]

    Как уже отмечалось, исключение из общей закономерности изменения свойств нефтей в южной зоне составляют нефти Столяровского и Старо-Казанковского месторождений. Наличие тяжелой и смолистой нефти в первом из них следует объяснить воздействием факторов гипергенеза, обусловленным, во-первых, относительно слабой изолированностью залежи непроницаемой покрышкой (мощность всей покрышки 442 м, из которых галогенная часть занимает только 57 м, возможно местами еще меньше), во-вторых, малыми размерами залежи и, в-третьих, приуроченностью залежи близко к борту прогиба, что исключало воз-1Можно сть глубокого погружения. Отклонение от общего правила в свойствах нефтей Старо-Казанковского месторождения остается непонятным. Таким образом, основным направлением изменения свойств нефтей в пределах Пред-уральского прогиба следует считать повышение их качества (уменьшение плотности, вязкости, содержания серы и смол повышение бензинового потенциала, а также снижение содержания сероводорода и других корродирующих сернистых соединений) и повышение газового фактора с севера на юг. [c.237]

    В 80-е годы в соответствии с классификацией, предложенной в [52], специалистами НИИМСК совместно с другими организациями на основе синтетических пиридиновых оснований были разработаны все указанные типы ингибиторов коррозии для газовой промышленности для первого типа — И-З-Д, И-З-Д(М), И-ЗО-Д, И-4-Д, И-5-ДТМ для второго — И-1-А, И-1-Д, И-2-Д, И-21-Д для третьего — И-25-Д [52]. Результаты лабораторных исследований показали высокую эффективность этих ингибиторов. Так, при концентрации 100 мг/л в сероводородсодержащих средах защитная эффективность составляет 84-96 %, а в присутствии углекислоты — 76-96 %. Для безгидратного режима добычи газа ингибиторы коррозии И-1-А, И-1-Д, И-2-Д, И-21-Д в средах, содержащих сероводород и углекислый газ, показали защитную эффективность 86-96 % при концентрации 200 мг/л. Ингибитор И-25-Д был разработан с целью замены импортного ингибитора Виско-904М1 для защиты газопромыслового оборудования Оренбургского газоконденсатного месторождения, работающего по гидратному режиму добычи газа. В нем были учтены все технологические требования, предъявляемые к ингибиторам коррозии в газовой промьппленности ингибитор не вызывает вспенивания растворов аминоспиртов, не стабилизирует эмульсии углеводородный конденсат-ингибитор гидратообразования, имеет низкие вязкость и температуру застьгеания [52, 67]. [c.19]

    ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы. Одной из актуальных проблем нефтяной отрасли является повышение эффективности эксплуатации скважин. Особую актуальность она приобретает при разработке залежей аномальных (неньютоновских) нефтей, где эксплуатация скважин осложняется проявлением аномалий вязкости и подвижности нефти, образованием асфальтосмолопарафиновых отложений (АСПО) и высоковязких эмульсий в призабойной зоне пласта (ПЗП). Кроме того, аномальные нефти, как правило, содержат в своем составе сероводород, что вносит дополнительные осложнения при эксплуатации скважин. [c.6]

    На рис. 4.57 и рис. 4.58 приведены зависимости растворимости этилмеркаитаиа и сероводорода от молекулярной массы алкиловых эфиров этиленгликолей. Рост числа оксиэтиленовых групп в эфирах приводит к увеличению растворимости в них этилмеркаитаиа и сероводорода, а также к возрастанию вязкости и температуры застывания абсорбента. [c.360]

    Вязкость сероводорода ири 1 атм приведена ппже  [c.216]

    Фирма Флуор разработала промышленный процесс, основанный на применении органических растворителей, имеющих в области обычных температур весьма низкое давление пара. Эти процессы известны под названиями процессов Флуор для удаления соответственно двуокиси углерода и сероводорода. Применяемые при этих процессах растворители в литературе не указываются , но очевидно, что для их использования в таком процессе растворяющая способность абсорбционной жидкости по отношению к двуокиси углерода (или сероводороду) должна быть в несколько раз больше, чем растворяющая способность воды вместе с тем растворитель должен обладать низкой растворяющей способностью по отношению к основным компонентам газового потока, т. е. углеводородам и водороду. Кроме того, растворитель должен иметь чрезвычайно низкое давление пара, низкую вязкость и малую гигроскопичность он не должен вызывать коррозии обычных металлов и должен быть инертным по отношению ко всем компонентам газа разумеется, он должен б дть доступен в промышленных количествах по приемлемой цене. [c.381]

    В лаборатории фирмы Лурги в ходе обширных исследований был найден растворитель, обладающий высокой температурой кипения, превосходными абсорбционными свойствами и избирательностью по отношению к сероводороду. Этим растворителем является К-метилиирролидон (NMP), который уже давно применяется для абсорбции п концентрирования ацетилена и бутадиена. Он кппит прп 206° С, плавится при —24° С. При 20° С плотность его 1,015 кг1л, вязкость 1,79 сст, теплоемкость 0,40 ккал1кг. NMP полностью смешивается с водой, что позволяет улавливать его пары из кислых газов простой водной промывкой. [c.385]


Смотреть страницы где упоминается термин Сероводород вязкость: [c.88]    [c.55]    [c.167]    [c.27]    [c.81]    [c.108]    [c.27]    [c.108]    [c.177]    [c.5]    [c.238]    [c.230]    [c.230]   
Справочник азотчика Том 1 (1967) -- [ c.216 ]

Справочник сернокислотчика Издание 2 1971 (1971) -- [ c.51 , c.52 ]

Техника лабораторной работы в органической химии Издание 3 (1973) -- [ c.311 ]

Справочник азотчика Т 1 (1967) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость сероводорода жидкого



© 2025 chem21.info Реклама на сайте